K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

ko pit làm

30 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2013.2014}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2013}+\frac{1}{2014}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2013}+\frac{1}{2014}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1007}\right)\)

\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\)

Lại có B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+...+\frac{1}{2014.1008}\)

=> 3022B = \(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+\frac{3022}{1010.2012}+...+\frac{3022}{2014.1008}\)

\(=\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+\frac{1}{1010}+\frac{1}{2012}+...+\frac{1}{2014}+\frac{1}{1008}\)

\(=2.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

=> \(B=\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{1511}.\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2013}+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)

=> \(\frac{A}{B}=1511\)

=> A/B là 1 số nguyên (đpcm)

20 tháng 6 2017

a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$

$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$

$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$

b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$

$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$

13 tháng 5 2018

A<B

19 tháng 3 2024

A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{217.218}\)

A = \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{217}-\dfrac{1}{218}\)

A = 1 - \(\dfrac{1}{218}\)

B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}\) + ... + \(\dfrac{1}{218}\)

Xét dãy số 110; 111; 112; ...; 218, dãy số này có số số hạng là:

         (218 - 110) : 1 + 1  =  109 (số)

Mặt khác \(\dfrac{1}{110}\) > \(\dfrac{1}{111}>\dfrac{1}{112}>...>\dfrac{1}{218}\)

⇒ B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}+...+\dfrac{1}{218}\) < \(\dfrac{1}{110}\) + \(\dfrac{1}{110}\)+ ... +\(\dfrac{1}{110}\)  

   B < \(\dfrac{1}{110}\) x 109

B  <  1 - \(\dfrac{1}{110}\)

\(\dfrac{1}{128}\) < \(\dfrac{1}{110}\) ⇒ A =  1 - \(\dfrac{1}{128}\) > 1 - \(\dfrac{1}{110}\)  > B 

A > B 

Nhận xét thấy:

\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...

Ta có

A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

A= 1- \(\dfrac{1}{6}\)

A= \(\dfrac{5}{6}\)

Vậy A= \(\dfrac{5}{6}\)

26 tháng 4 2017

CAU NAY RAT DE NHA BAN

A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)

A=1-\(\dfrac{1}{6}\)

=>A=\(\dfrac{5}{6}\)

10 tháng 4 2018

A= \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\)

= 1-\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{6}\)

= 1 - \(\dfrac{1}{6}\)= \(\dfrac{5}{6}\)

mk chỉ bt làm câu 1 thôi ak

mong bn thông cảmthanghoa