Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-1\)
\(\Rightarrow\left(ab+bc+ac\right)^2=1\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\Rightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\)
Ta có: \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\)
\(a+b+c=0=>\left(a+b+c\right)^2=0=>a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(=>2+2\left(ab+bc+ca\right)=0=>ab+bc+ca=-1\)
\(=>\left(ab+bc+ca\right)^2=1\)
\(=>a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1=>a^2b^2+b^2c^2+c^2a^2=1\)
\(=>a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2^2-2.1=2\)
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=\frac{-1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)( 1 )
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
Mà theo ( 1 ) nên có \(a^2+b^4+c^4=\frac{1}{2}\)
P/S:Hướng lm là như vầy nhé !
Cho a + b + c = 0 và a2 + b2 +c2= 1 Tính giá trị của biểu thức M = a4+b4+c4 Giúp mk vs nha!!
Tham khảo
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow2+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+0=1\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\)
Mặt khác:
\(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
=>\(\Rightarrow a^4+b^4+c^4+2.1=4\Rightarrow a^4+b^4+c^4+2=4\Rightarrow a^4+b^4+c^4=2\)
tính tương tự câu kia
Ta có: ab+ac+bc=-7 (ab+ac+bc)2=49(ab+ac+bc)2=49
nên
(ab)2+(bc)2+(ac)2=49(ab)2+(bc)2+(ac)2=49
nên a4+b4+c4=(a2+b2+c2)2−2(ab)2−2(ac)2−2(bc)2=a4+b4+c4=(a2+b2+c2)2−2(ab)2−2(ac)2−2(bc)2= 98
t i c k nhé 5747457567568768769987907807956845784676
\(a^2+b^2+c^2=\left(a+b+c\right)^2-2ab-2bc-2ca=0-2\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow\)\(ab+bc+ca=\frac{-1}{2}\)
\(\Leftrightarrow\)\(\left(ab+bc+ca\right)^2=\left(\frac{-1}{2}\right)^2\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=\frac{1}{4}\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\) ( do \(a+b+c=0\))
\(\Rightarrow\)\(M=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(M=1^2-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
...
mắt cận thế số này ko nhìn ra đeo ính chứ ko phải kính lúp