Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (a^2+c^2).(b^2+d^2)-(ab+cd)^2
= a^2b^2+c^2b^2+a^2d^2+c^2d^2-a^2b^2-2abcd-c^2d^2
= b^2c^2+a^2d^2-2abcd = (bc-ad)^2 >= 0
=> (ab+cd)^2 <= (a^2+c^2).(b^2+d^2) ( bđt này còn được gọi là bđt bunhiacopxki )
=> đpcm
Dấu "=" xảy ra <=> bc-ad=0
<=> bc = ad <=> a/b = c/d
k mk nha
Ta khai triển ra có (ad-bc)2>=0 (đúng với mọi abcd)
Dấu "=" xảy ra khi
ad=bc
áp dụng BĐT bunhia... ta có
\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
\(\Rightarrow a+2b\le3c\)
áp dụng cosi ta có
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)
dấu = xảy ra khi a=b=c
Áp dụng BĐT Svac - xơ:
\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)\(=\frac{1^2}{a^2+2ab}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\ge9\)(Vì \(a+b+c\le1\))
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
Vì \(0\le a,b,c\le2\)nên:
\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)
\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)
Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)
(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))
a:Sửa đề: \(a^2-4ab+4b^2\)
\(=a^2-2\cdot a\cdot2b+4b^2\)
\(=\left(a-2b\right)^2\ge0\)(luôn đúng)
b: \(-2a^2+a-1\)
\(=-2\left(a^2-\dfrac{1}{2}a+\dfrac{1}{2}\right)\)
\(=-2\left(a^2-2\cdot a\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)
\(=-2\left(a-\dfrac{1}{2}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\forall x\)