Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Côsi:
\(VT=\left(a-b\right)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{\left(a-b\right)\left(b+1\right)^2}-1\)
\(\ge4\sqrt[4]{\left(a-b\right).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Ở đây ko yêu cầu chỉ ra dấu bằng nên ta ko cần làm điều đó.
bạn biết bđt svác sơ chứ nếu không biết có thể lên mạng tra
Áp dụng bđt svác sơ ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b};\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c};\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\)
cộng vào ta có
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Thêm câu nữa bạn
Rút gọn
\(P=\frac{x^2}{xy+y^2}+\frac{y^2}{xy-x^2}-\frac{x^2+y^2}{xy}\)
Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)
Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)
\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)
\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0
Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)
\(2a^3+1\ge12ab-12b^2\Leftrightarrow2a^3+1-12ab+12b^2\ge0\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)+3\left(a^2-4ab+4b^2\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)+3\left(a-2b\right)^2\ge0\left(luondung\right)\)
c/m tương đương.
nhân chéo lên đi