K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

nhân chéo rồi tương đương đi bạn

5 tháng 8 2016

Côsi:

\(VT=\left(a-b\right)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{\left(a-b\right)\left(b+1\right)^2}-1\)

\(\ge4\sqrt[4]{\left(a-b\right).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Ở đây ko yêu cầu chỉ ra dấu bằng nên ta ko cần làm điều đó.

5 tháng 8 2016

\(2a^3+1\ge12ab-12b^2\Leftrightarrow2a^3+1-12ab+12b^2\ge0\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)+3\left(a^2-4ab+4b^2\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)+3\left(a-2b\right)^2\ge0\left(luondung\right)\)

5 tháng 8 2016

c/m tương đương.
nhân chéo lên đi

10 tháng 7 2019

Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)

Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)

\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)

\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0

Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)

31 tháng 3 2018

cm \(P\ge\frac{3}{4}\)nhé mn

25 tháng 2 2020

\(VT=\Pi\left(1+1+\frac{a}{b}\right)^{\alpha}\ge\Pi\left(3\sqrt[3]{\frac{a}{b}}\right)^{\alpha}=\Pi\left[3^a\sqrt[3]{\frac{a^{\alpha}}{b^{\alpha}}}\right]=3^{3a}\)?!?

Mình làm sai ak?

3 tháng 9 2019

Ta có: \(LHS\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}}\) (Cô si + nhân cả tử và mẫu với 3(a+b+c)  )

Mặt khác áp dụng BĐT quen thuộc \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

với x = ab; y = bc; z = ca thu được: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Từ đó: \(LHS\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}}\)

\(\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}}=RHS\)(qed)

6 tháng 2 2019

Đề khắm vậy -_- a + b = 3 - c thì viết luôn thành a + b + c = 3 cho rồi .... bày đặt

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(x;y;z>0\right)\)

\(VT=a^3+b^3+c^3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^3+b^3+c^3+\frac{18}{a+b+c}\)

                                                                                      \(=a^3+b^3+c^3+6\)

Áp dụng bđt Cô-si cho 3 số ta đc

\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)

\(b^3+1+1\ge3b\)

\(c^3+1+1\ge3c\)

Cộng từng vế vào ta được

\(VT\ge a^3+b^3+c^3+6\ge3\left(a+b+c\right)=\left(a+b+c\right)^2\)

Lại có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(Phá ngoặc + chuyển vế -> tổng bình phương)

\(\Rightarrow VT\ge3\left(ab+bc+ca\right)\)(Đpcm)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy ....

1 tháng 5 2017

Vì nó thik thì nó \(\ge\) thôi

Đúng 100%

Đúng 100%

Đúng 100%