K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2\sqrt{2^2}}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}\cdot2ab}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{1}{2}+2\cdot8+\frac{1}{2}=17\)

16 tháng 7 2018

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)

\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)

Nên GTNN của P là 17 đạt được khi a=b=2

12 tháng 5 2017

minh hoc lop 10 k cho minh roi minh giup

12 tháng 5 2017

đấy cũng gọi là câu trả lời à!

11 tháng 12 2018

\(A=\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\\ =\dfrac{2}{a^2+b^2}+\dfrac{2}{2ab}+\dfrac{34}{ab}+\dfrac{17ab}{8}-\dfrac{ab}{8}\\ =2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+17\left(\dfrac{2}{ab}+\dfrac{ab}{8}\right)-\dfrac{ab}{8}\\ \overset{AM-GM}{\ge}2\cdot\dfrac{1}{a^2+b^2+2ab}+17\sqrt{\dfrac{2}{ab}\cdot\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{2}{\left(a+b\right)^2}+\dfrac{17}{2}-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{2}{4^2}+\dfrac{17}{2}-\dfrac{4^2}{32}=\dfrac{65}{8}\)

Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}\dfrac{2}{ab}=\dfrac{ab}{8}\\a^2+b^2=2ab\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)

Vậy \(A_{Min}=\dfrac{65}{8}\) khi \(a=b=2\)

11 tháng 12 2018

Không có vÄn bản thay thế tá»± Äá»ng nà o.\(\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+17\cdot2\sqrt{\dfrac{2}{ab}+\dfrac{ab}{8}}-\dfrac{\left(a+b\right)^2}{4\cdot8}\\ =\dfrac{8}{\left(a+b\right)^2}+17-\dfrac{\left(a+b\right)^2}{32}\\ \ge\dfrac{8}{4^2}+17-\dfrac{4^2}{32}=17\)

Không có vÄn bản thay thế tá»± Äá»ng nà o.Vậy \(A_{Min}=17\) khi \(a=b=c=2\)

30 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(A=5a+6b+7c+\frac{1}{a}+\frac{8}{b}+\frac{27}{c}\)

\(=4\left(a+b+c\right)+\left(\frac{1}{a}+a\right)+\left(\frac{8}{b}+2b\right)+\left(\frac{27}{c}+3c\right)\)

\(\ge4\cdot6+2\sqrt{\frac{1}{a}\cdot a}+2\sqrt{\frac{8}{b}\cdot2b}+2\sqrt{\frac{27}{c}\cdot3c}\)

\(\ge24+2+2\cdot4+2\cdot9=52\)

Xảy ra khi \(\frac{1}{a}=a;\frac{8}{b}=2b;\frac{27}{c}=3c\Rightarrow a=1;b=2;c=3\)