Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c\)
Bài 1
Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)
Biến đổi:
\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)
\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)
\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)
Áp dụng BĐT Am-Gm:
\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$
Vì \(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)
\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)
\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.
Bài 2a)
Ta có
\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)
\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)
\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)
Vì \(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)
\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)
Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
Vì 2ab < (a2 + b2) , 2ac < (a2 + c2) , 2bc < (b2 + c2)
Nên (a + b + c)2 < a2 + b2 + c2 + (a2 + b2) + (a2 + c2) + (b2 + c2) = 3(a2 + b2 + c2)
a) Áp dụng BĐT tam giác:
b-c<a
\(\Leftrightarrow\left(b-c\right)^2< a^2\)(đpcm).
b) Áp dụng BĐT tam giác:
\(a< b+c\)
\(\Leftrightarrow a^2< ab+ac\)
TTự, có: \(b^2< bc+ab,c^2< ac+bc\)
Cộng 3 BĐT, ta được: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2a−c<b<=>a2+c2−2ac<b2
Cộng các vế ta có
2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)
đơn giản thôi!!!!!!
Theo bài có \(\dfrac{A}{C}=\dfrac{C}{B}\Rightarrow C^2=AB\) (1)
Ta có VT=\(\dfrac{A^2+C^2}{B^2+C^2}=\dfrac{A^2+AB}{B^2+AB}\)( thay (1) vào nha)
VT=\(\dfrac{A\left(A+B\right)}{B\left(A+B\right)}=\dfrac{A}{B}\)
Vậy VT=VP(đpcm)