K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2019

\(P=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\ge\frac{3.4}{a^2+b^2+2ab}+\frac{2}{\left(a+b\right)^2}=\frac{14}{\left(a+b\right)^2}=14\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([(a+\frac{1}{a})^2+(b+\frac{1}{b})^2](1^2+1^2)\geq (a+\frac{1}{a}+b+\frac{1}{b})^2=(1+\frac{1}{a}+\frac{1}{b})^2\)

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\)

Tiếp tục áp dụng BDDT Bunhiacopxky:

$\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}=4$

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\geq \frac{1}{2}(1+4)^2=12,5\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

21 tháng 12 2019

Điều kiện a khác 1 nữa nhé!

21 tháng 12 2019

a, \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\) \(\left(a>0;a\ne2\right)\)

\(=\left[\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]:\frac{a+2}{a-2}\)

\(=\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}.\frac{a-2}{a+2}\)

\(=\frac{2\sqrt{a}}{\sqrt{a}}.\frac{a-2}{a+2}\)

\(=\frac{2\left(a-2\right)}{a+2}\)

b, Để: \(A=1\Leftrightarrow\frac{2\left(a-2\right)}{a+2}=1\)

\(\Rightarrow\frac{2a-4-a-2}{a+2}=0\)

\(\Rightarrow\frac{a-6}{a+2}=0\)

\(\Rightarrow a-6=0\)

\(\Rightarrow a=6\left(tm\right)\)

Vậy...........................

1 tháng 8 2019

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)

22 tháng 10 2017

Đặt a-1=x, b-1=y (\(x,y>\frac{\sqrt{5}-3}{2}\))

=> \(xy=1\)

VT= \(\frac{1}{\left(x+1\right)^2+x}+\frac{1}{\left(y+1\right)^2+y}=\frac{1}{\left(\frac{1}{y}+1\right)^2+\frac{1}{y}}+\frac{1}{\left(y+1\right)^2+y}=\frac{y^2+1}{\left(y+1\right)^2+y}\)\(=\frac{2}{5}-\frac{3\left(y-1\right)^2}{\left(y+1\right)^2+y}\ge\frac{2}{5}\)(do \(\left(y+1\right)^2+y=b^2+b-1>0\))

Dấu bằng khi \(x=y=1\)=> \(a=b=2\)

24 tháng 10 2017

đơn giản hơn cách của quý đây

a+b=ab => \(\frac{1}{a}+\frac{1}{b}=1\)Đặt \(\frac{1}{a}=x;\frac{1}{y}=b\)

Khi đó \(\frac{1}{a^2+a-1}=\frac{1}{\left(\frac{1}{x}\right)^2+\frac{1}{x}-1}=\frac{x^2}{1+x-x^2}\)

Chứng minh tương tự với b

=> Đặt A=\(\frac{1}{a^2+a-1}+\frac{1}{b^2+b-1}=\frac{x^2}{1+x-x^2}+\frac{y^2}{1+y-y^2}\)

Cauchy-Schwarz và nhớ: x+y=1 và x2+y2 >=1/2

OK

7 tháng 1 2018

C, d của VT đâu b

2 tháng 7 2018

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

???? là sao vừa lớn vừa bằng đó

duyệt đi