K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Điều kiện a khác 1 nữa nhé!

21 tháng 12 2019

a, \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\) \(\left(a>0;a\ne2\right)\)

\(=\left[\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]:\frac{a+2}{a-2}\)

\(=\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}.\frac{a-2}{a+2}\)

\(=\frac{2\sqrt{a}}{\sqrt{a}}.\frac{a-2}{a+2}\)

\(=\frac{2\left(a-2\right)}{a+2}\)

b, Để: \(A=1\Leftrightarrow\frac{2\left(a-2\right)}{a+2}=1\)

\(\Rightarrow\frac{2a-4-a-2}{a+2}=0\)

\(\Rightarrow\frac{a-6}{a+2}=0\)

\(\Rightarrow a-6=0\)

\(\Rightarrow a=6\left(tm\right)\)

Vậy...........................

3 tháng 10 2017

a) Q=\(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)=\(\frac{\sqrt{a}-2}{3\sqrt{a}}\)  b) Ta thấy \(3\sqrt{a}>0\), để Q dương thì \(\sqrt{a}-2>0\Rightarrow a>4\)

25 tháng 8 2016

a) ĐKXĐ: \(x\ge0;x\ne1\)

P=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

 =\(\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{-1-3\sqrt{a}}{a-1}\right)\)

 =\(\frac{\left(a-1\right)^2}{4a}.\frac{-1-3\sqrt{a}}{a-1}\)

 =\(\frac{\left(a-1\right)\left(-1-3\sqrt{a}\right)}{4a}\)

 

 

24 tháng 7 2019

a) \(A=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{6}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(A=\frac{\left(-\sqrt{a}+1\right)^2}{\left(-a+1\right)^2}.\left(\sqrt{a}+\frac{-a\sqrt{a}+1}{-\sqrt{a}+1}\right)\)

\(A=\frac{\left(1-\sqrt{a}\right)^2\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(A=\frac{\frac{-a\sqrt{a}+\sqrt{a}.\left(-\sqrt{a}+1\right)+1}{-\sqrt{a}+1}.\left(-\sqrt{a}+1\right)^2}{\left(1-a\right)^2}\)

\(A=\frac{a^2-2a+1}{\left(1-a\right)^2}\)

\(A=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)

\(A=1\)