K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
A
0
VN
7 tháng 2 2020
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
vì a;b;c >0 nên 1/a;1/b;1/c>0
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}\)(bđt cosi)
\(=3\sqrt[3]{abc}\cdot3\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\sqrt[3]{abc}\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\frac{\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
\(\Rightarrow\)đpcm
cách khác nhé:
\(VT=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
C/m BĐT phụ: \(\frac{x}{y}+\frac{y}{x}\ge2\) (x,y > 0)
\(\Leftrightarrow\)\(\frac{x^2}{xy}+\frac{y^2}{xy}\ge\frac{2xy}{xy}\)
\(\Leftrightarrow\) \(\frac{x^2+y^2-2xy}{xy}\ge0\)
\(\Leftrightarrow\) \(\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=y\)
Áp dụng BĐT trên ta có:
\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)
hay \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)