Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{a+c}>\frac{b}{a+b+c},\frac{c}{a+b}>\frac{c}{a+b+c}\)
tổng lại sẽ>1
vì a;b;c >0 nên 1/a;1/b;1/c>0
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}\)(bđt cosi)
\(=3\sqrt[3]{abc}\cdot3\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\sqrt[3]{abc}\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\frac{\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
\(\Rightarrow\)đpcm
cách khác nhé:
\(VT=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
C/m BĐT phụ: \(\frac{x}{y}+\frac{y}{x}\ge2\) (x,y > 0)
\(\Leftrightarrow\)\(\frac{x^2}{xy}+\frac{y^2}{xy}\ge\frac{2xy}{xy}\)
\(\Leftrightarrow\) \(\frac{x^2+y^2-2xy}{xy}\ge0\)
\(\Leftrightarrow\) \(\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=y\)
Áp dụng BĐT trên ta có:
\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)
hay \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)