K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Bạn viết rõ đề bài hơn 1 chút được không, trông thế này hơi khó đoán đúng đề, ko giải được

15 tháng 4 2018

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

Quy đồng mẫu hai phân số \(\frac{2019a+c}{2019b+d}\) và \(\frac{c}{d}\)

\(\frac{2019a+c}{2019b+d}=\frac{d\left(2019a+c\right)}{d\left(2019b+d\right)}=\frac{2019ad+cd}{2019bd+d^2}\)

\(\frac{c}{d}=\frac{c\left(2019b+d\right)}{d\left(2019b+d\right)}=\frac{2019bc+2019cd}{2019bd+d^2}\)

Vì ad < bc nên 2019ad + cd < 2019bc + 2019cd => \(\frac{2019a+c}{2019b+d}< \frac{c}{d}\)(đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:

$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0\Rightarrow \frac{ad-bc}{bd}<0$

$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)

Xét hiệu: 

$\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{d(2014b+d)}$

$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$

$\Rightarrow \frac{2014a+c}{2014b+d}<\frac{c}{d}$

20 tháng 4 2017

32k/h

16 tháng 4 2017

Ta có: a2 + b2 = c2 + d2 

=> a2 - c2 = d2 - b2

=> (a - c)(a + c) = (d - b)(d + b)

Mà a + b = c + d

=> a - c = d - b

+) Nếu a = c

=> a - c = d - b = 0

=> d = b

=> a2014 = c2014 và d2014 = b2014 

=> a2014 + b2014 = c2014 + d2014              (1)

+) Nếu a \(\ne\) c

=> a - c = d - b  (khác 0)

=> d \(\ne\)

Có (a - c)(a + c) = (d - b)(d + b)

=> a + c = d + c                     (2)

Mà a + b = c + d                     (3)

Lấy (2) + (3) ta được:

2a + b + c = 2d + b + c

=> 2a = 2d

=> a = d

=> c = b

=> a2014 = d2014 và c2014 = b2014

=> a2014 + b2014 = c2014 + d2014                 (4)

Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)

16 tháng 4 2017

\(a^2+b^2=c^2+d^2\Leftrightarrow a^2-c^2=d^2-b^2\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

mà a+b=c+d => a-c=d-b => \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

TH1: a-c=0 hay a=c, kết hợp với a+b=c+d => b=d

=>a2014+b2014=c2014+d2014

TH2: a-c\(\ne\)0 hay a\(\ne\)c, từ \(\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)=>a+c=d+b

mà a+b=c+d => a+c+a+b=d+b+c+d => 2a=2d => a=d => b=c

=>a2014+b2014=c2014+d2014

Từ 2 trường hợp trên => đpcm

24 tháng 1 2016

nhấn vào đúng 0 sẽ ra kết quả

olm-logo.png

2 tháng 7 2021

\(b)\)

\(4n-3⋮3n-2\)

\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)

\(\Leftrightarrow12n-9⋮3n-2\)

\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)

\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)

\(\Leftrightarrow1⋮3n-2\)

\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow3n\in\left\{1;3\right\}\)

Mà: \(3n⋮3\)

\(\Leftrightarrow3n=3\)

\(\Leftrightarrow n=1\)