Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(=\frac{ab}{cd}\)
Điều PCM
ta có \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
ta có \(\frac{a.b}{cd}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)
ta có \(\frac{a^2-b^2}{c^2-d^2}=\frac{k^2.b^2-b^2}{k^2.d^2-d^2}=\frac{b^2\left(k-1\right)}{d^2\left(k-1\right)}=\frac{b^2}{d^2}\)
vậy \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ab}{b^2}=\frac{cd}{d^2}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}\)
\(\Rightarrow\frac{2ab}{2cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}\Rightarrow\frac{ab}{cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
Cho tỉ lệ thức : a/b = c/d ( a , b , c , d khác 0 )
Chứng minh rằng : a^2 + b^2 / c^2 + d^2 = ab / cd
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Đpcm)
1, a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> b(c-d)=d(a-b)
=> \(\frac{c-d}{d}=\frac{a-b}{b}\)(đpcm)
2, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (1)
Mặt khác: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)(đpcm)
Hình như đề của bạn sai 1 số chỗ
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$. Khi đó:
$\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}(1)$
$\frac{a^2-b^2}{c^2-d^2}=\frac{(bk)^2-b^2}{(dk)^2-d^2}=\frac{b^2(k^2-1)}{d^2(k^2-1)}=\frac{b^2}{d^2}(2)$
Từ $(1); (2)$ ta có đpcm
------------------------
Lại có:
$(\frac{a+b}{c+d})^2=(\frac{bk+b}{dk+d})^2=(\frac{b(k+1)}{d(k+1)})^2=(\frac{b}{d})^2(3)$
$\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}=(\frac{b}{d})^2(4)$
Từ $(3); (4)$ ta có đpcm.
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
ta có; a/b = c/d
suy ra a/b - 1=c/d-1
a-b/b=c-d/d(đpcm)
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) => đpcm
b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)
Từ (1) và (2) => đpcm
Đặt :
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
+) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
+) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)