Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét tứ giác DEBF có
BE//DF
BE=FD
Do đó; DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường(1)
b: Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mõi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
=>E,O,F thẳng hàng
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Vì DEBFlà hình bình hành
nên DB cắt EF tại trung điểm của mỗi đường(1)
Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra E,O,F thẳng hàng
c: Để DEBF là hình thoi thì DE=BE=AB/2
Xét ΔDAB có
DE là trung tuyến
DE=AB/2
Do đo:ΔDAB vuông tại D
=>DA vuông góc với DB
A B C D H M
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy