K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2022

Vì a, b, c, d là 4 số nguyên tố lớn hơn 5 và khi chia cho 5 được các số dư khác nhau nên: \(\left\{{}\begin{matrix}a=5k+1\\b=5k+2\\c=5k+3\\d=5k+4\end{matrix}\right.\)\(\Rightarrow a+b+c+d=\left(5k+1\right)+\left(5k+2\right)+\left(5k+3\right)+\left(5k+4\right)=20k+10\)

\(=5\left(4k+2\right)⋮5\)

=> Đpcm

15 tháng 7 2022

cảm ơn bạn nha

 

5 tháng 7 2016

a) thấy 60 chia hết cho 15 => 60n chia hết cho 15

           45 chia hết cho 15 nhưng không chi hết cho 30

=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30

b) ta có 3 số nguyên liên tiếp là a,a+1,a+2

tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3

d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)

=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5

5 tháng 7 2016

các bn ơi giúp mik đi mik cần gấp lắm

24 tháng 1 2018

Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)

= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)

Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5

=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)

Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )

=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)

Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> (p-1).(p+1) chia hết cho 8

=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)

Từ (1) và (2) => a^5-a chia hết cho 40

Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40

=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40

Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40

Tk mk nha

4 tháng 1 2018

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6