K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)

= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)

Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5

=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)

Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )

=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)

Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> (p-1).(p+1) chia hết cho 8

=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)

Từ (1) và (2) => a^5-a chia hết cho 40

Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40

=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40

Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40

Tk mk nha

1 tháng 3 2020

a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5

mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)

b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn

(a,b).[a,b]=a.b=d.d.6

a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1

23 tháng 5 2022

ko bt

 

5 tháng 7 2018

c )D = 1 + 4 + 4^2 + 4^3 + ... + 4^69

D = ( 1 + 4 )  + ( 4^2 + 4^3 ) + (  4^4 + 4^5 ) + ... + ( 4^68 + 4^69 )

D = 5 + 4^2( 1 + 4 ) + 4^4( 1 + 4 ) + ... + 4^68( 1 + 4 )

D = 5 + 4^2 . 5 + 4^4 . 5 + ... + 4^68 . 5

D = 5( 1 + 4^2 + 4^4 + ... + 4^68 )