Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Hay \(a=b=c\)
Thay vào bài toán:
\(\left(2a+70b+1945c\right)^{2018}=\left(2a+70a+1945a\right)^{2018}=2017a^{2018}\)
Lại có:
\(2017^{2018}.a^{39}.b^{13}.b^{1975}=2017^{2018}.a^{39}.a^{13}.a^{1975}=2017^{2018}.a^{2018}=2017a^{2018}\)Ta có đpcm
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Ta có \(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=t\)
\(\Rightarrow\hept{\begin{cases}a=bt\\b=ct\\c=at\end{cases}}\Rightarrow\hept{\begin{cases}a=ct^2\\c=at\end{cases}}\Rightarrow a=at^3\Rightarrow t=1\)
Vậy thì a = b = c.
Khi đó: \(\left(3a+8b+2007c\right)^{2017}=\left(2018a\right)^{2017}=2018^{2017}.a^{2017}\)
\(2018^{2017}.a^3.b^{10}.c^{2004}=2018^{2017}.a^{2017}\)
Vậy nên ta có \(\left(3a+8b+2007c\right)^{2017}=2018^{2017}.a^3.b^{10}.c^{2004}\)
b\(^{10}\)c\(^{2004}\)
vừa mk viết lộn