K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Áp dụng 

\(\left(x+y+z\right)^3=x^3+y^3+z^3+\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)

Ta có: 

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=> \(2ab+2ac+2bc=0\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

KHi đó:

 \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)-\frac{3}{abc}\)

=> \(0=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+0-\frac{3}{abc}\)

=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha

13 tháng 12 2015

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(A=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\)\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0+0=0\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Đề sai. Bạn xem lại đề.

19 tháng 2 2018

Áp dụng bất đẳng thức Cô-si ta có : 

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)

Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho ) 

Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

19 tháng 2 2018

Bạn ơi đề cho : a=b=c hay \(\left(a+b+c\right)^2=a^2+b^2+c^2\)