Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow ab+bc+ca=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
bạn kiếm kiểu gì cx ko có ai giải đâu, đề này sai r, nãy mình sửa mới đúng
Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)