K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Kise mik ko biết nhưng mik tặng bn đẹp ko ?

11 tháng 12 2016

Đầu tiên ta chứng minh bổ đề. 

Ta có

\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)

\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)

\(\Rightarrow a^6b^4c^2\le3^3.2^2\)

Ta lại có:

\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)

\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)

\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)

\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)

1 tháng 6 2019

\(2a\)\(:\)\(x+y=2\)

\(\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow x^2+y^2=4-2xy\)

\(\Rightarrow4-2xy\)nhỏ nhất 

\(\Rightarrow xy\)lớn nhất 

Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm

vì ta cần xy lớn nhất nên x , y không thể khác dấu

\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2 

\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2

không chắc nữa

20 tháng 9 2015

bình phương lên sau đó chuyển vế là đc