K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

25 tháng 9 2019

Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath

Tham khảo câu b

25 tháng 9 2019

thank^v^

5 tháng 7 2018


Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu


 

5 tháng 7 2018

a, a2+b2+c2 >= ab+bc+ca

<=>a2+b2+c2-ab-bc-ca >= 0

<=>2(a2+b2+c2-ab-bc-ca) >= 0

<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0

<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

b, a2+b2+1 >= ab+a+b

<=>a2+b2+1-ab-a-b >= 0

<=>2(a2+b2+1-ab-a-b) >= 0

<=>2a2+2b2+2-2ab-2a-2b >= 0

<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0

<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)

Vậy...

c, a2+b2+c2+3 >= 2(a+b+c)

<=>a2+b2+c2+3-2a-2b-2c >= 0

<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0

<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)

Vậy...

d, a2+b2+c2 >= 2(ab+bc-ca)

<=>a2+b2+c2-2ab-2bc+2ca >= 0

<=>(a-b-c)2 >= 0 (luôn đúng)

Dấu "=" xảy ra khi a=b=c

Vậy...

e,ta có:  \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)

Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)

Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)

Dấu "=" xảy ra khi a = b