K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Câu hỏi của Trần Điền - Toán lớp 9 - Học toán với OnlineMath

Tham khảo câu b

25 tháng 9 2019

thank^v^

8 tháng 4 2017

oh my dog toán lớp 8 đây á

mik làm đc hình như mỗi câu a thôi thì phải

8 tháng 4 2017

có câu a là lớp 8 có khả năng chứng minh mà hơi khó

28 tháng 11 2016

Ta có:

a < b + c
=> a + a <a + b + c
=> 2a < 2
--> a < 1

Tương tự ta có : b < 1,c < 1

Suy ra: (1 − a)(1 − b)(1 − c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < − 1 + ab + bc + ca
⇔ 2abc < − 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < a^2 + b^2 + c^2 – 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < (a + b + c)^2 − 2
⇔ a^2 + b^2 + c^2 + 2abc < 2^2−2 = 2
⇔ dpcm

28 tháng 11 2016

ukm!khó bn nhỉ?đúng là 1 bài toán hay vs đáng cân nhắc ,tham khảo thêm.....mọi người nhớ kb với mik nha!!!yêu nhìu>_<

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

15 tháng 5 2018

b.

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

Xét hiệu:

\(3\left(a^2+b^2+c^2\right)-\left(a+b+c^2\right)=3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\)

\(=2a^2+2b^2+2c^2-2ab-2ac-2bc\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng)

=> \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 3 2019

Lời giải:

Vì $a,b,c$ là 3 cạnh tam giác nên theo BĐT tam giác thì:

\(\left\{\begin{matrix} a< b+c\\ b< c+a\\ c< a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2a< a+b+c=2\\ 2b< c+a+b=2\\ 2c< a+b+c=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a< 1\\ b< 1\\ c< 1\end{matrix}\right.\)

\(\Rightarrow a-1<0; b-1<0; c-1<0\)

\(\Rightarrow (a-1)(b-1)(c-1)<0\)

\(\Leftrightarrow (ab-a-b+1)(c-1)<0\)

\(\Leftrightarrow abc-(ab+bc+ac)+a+b+c-1<0\)

\(\Leftrightarrow abc< ab+bc+ac-1\)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2(ab+bc+ac-1)=(a+b+c)^2-2=2^2-2=2\)

Ta có đpcm.

Áp dụng bất đẳng thức tam giác ta có :

(1) a < b + c  => a2 < ab + ac

(2) b < a + c => b2 < ab + bc

(3) c < a + b => c2 < ac + bc

Từ (1) , (2) và (3) => a2 + b2 + c2 < ab + ac + ab + bc + ac + bc = 2(ab + bc + ac) (đpcm)