Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)
\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=-\frac{12}{x^2+x+1}\)
b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)
c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)
\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)
\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)
\(N=\frac{1+b+bc}{b+1+bc}\)
\(N=1.\)
\(K=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017bc}{abc+2017bc+2017b}\)
\(K=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{2017bc}{2017\left(bc+b+1\right)}\)
\(K=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)
\(H=\frac{4x^2+4-4x^2-4x-1}{x^2+1}=\frac{4\left(x^2+1\right)}{x^2+1}-\frac{\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
\(\Rightarrow H_{max}=4\) khi \(x=-\frac{1}{2}\)
a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)
cm \(a^3+b^3+c^3=3abc\)
thì \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
(chuyển vế xét hiệu )
TA CÓ: \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a-b=0;c-a=0;b-c=0\Rightarrow a=b=c\)
\(\Rightarrow\frac{a^{2017}}{b^{2017}}+\frac{b^{2017}}{c^{2017}}+\frac{c^{2017}}{a^{2017}}=1+1+1=3\)
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow a=b=c\) (a,b,c là các số dương)
Bạn thay vào A để tính.
Thay abc = 2017 vào A ta có:
\(A=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)
\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=1\)
những dạng có cho tích hoặc tổng bằng một số nào đó và trog đa thức cần tính có tích hoặc tổng hoặc số đó thj kiểu j cx p thay vào bn ak.
hỳ mik tự rút đc kinh nghiệm đó mờ