Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
...
\(a)\) Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm )
Vậy \(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt ~
a, a+b+c=0 => a+b=-c
=>(a+b)3=(-c)3
=>a3+3a2b+3ab2+b3=-c3
=>a3+3ab(a+b)+b3=-c3
Mà a+b=-c
=>a3-3abc+b3=-c3
=>a3+b3+c3=3abc (đpcm)
b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
mà a3+b3+c3=3abc (bài a)
\(\Rightarrow P=\frac{3abc}{abc}=3\)
Vậy P=3
phân tích a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
=>a=b=c(vì a+b+c khác 0)
thay a=b=c vào P
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(=a^3+b^3+a^2c+b^2c-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
Do \(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+c=-b\\b+c=-a\end{cases}}\)
suy ra: \(M=-a^2b-ab^2-abc\)
\(=-ab\left(a+b+c\right)=0\) (do a+b+c = 0)
Giả sử: a = 2 ; b=3 ; c = -5 ( vì miễn a+b+c=0 là đk mà!^^)
Khi đó ta có biểu thức:
\(a^3+b^3+a^2c+b^2c-abc=2^3+3^3+2^2\left(-5\right)+3^2\left(-5\right)-2.3.\left(-5\right).\)
\(=8+27+\left(-20\right)+\left(-45\right)-\left(-30\right)\)
\(=35+30-20-45=65-65\)
\(=0\)
a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c
Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)
Từ giả thiết => a = 0 hoặc a = b
* TH1: a = 0
b(b-c)+c(c-a)=0 <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)
Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0
Vậy a = b = c = 0 => A = 5
* TH2: a = b
b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c
Vậy a =b=c => A = a3 + a3 +a3 - 3a3 + 3a2 - 3a + 5
= 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4
Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4
17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)
ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)
Ta có: a3(b - c) + b3(c - a) + c3(a - b)
= a3(b - c) - b3(b - c) - b3(a - b) + c3(a - b)
= (b - c)(a3 - b3) - (b3 - c3)(a - b)
= (b - c)(a - b)(a2 + ab + b2) - (a - b)(b - c)(b2 + bc + c2)
= (a - b)(b - c)(a2 + ab + b2 - b2 - bc - c2)
= (a - b)(b - c)(a2 + ab - bc - c2)
= (a - b)(b - c)[(a + c)(a - c) + b(a - c)]
= (a - b)(b - c)(a - c)(a + b + c) = 0 ( vì a + b + c = 0 )