Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a/b = c/d .
=> CM: ab/cd = (a+b)2 / (c+d)2
=> CM: a4+b4 / c4 +d4 = (a-b)4 / (c+d)4
Giúp mình nha!!!
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Vậy \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) Ta có:
\(\frac{a^4+b^4}{c^4+d^4}=\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4.k^4+b^4}{d^4.k^4+d^4}=\frac{b^4.\left(k^4+1\right)}{d^4.\left(k^4+1\right)}=\frac{b^4}{d^4}\) (1)
\(\frac{\left(a+b\right)^4}{\left(c+d\right)^4}=\frac{\left(bk+b\right)^4}{\left(dk+d\right)^4}=\frac{\left[b\left(k+1\right)\right]^4}{\left[d\left(k+1\right)\right]^4}=\frac{b^4}{d^4}\) (2)
Từ (1) và (2) suy ra \(\frac{a^4+b^4}{c^4+d^4}=\frac{\left(a+b\right)^4}{\left(c+d\right)^4}\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
a, 128 = 122.4 = (122)4 = 1444
812 = 83.4 = (83)4 = 5124
Vì 5124 > 1444
=> 812 > 128
b, (-5)39 = (-5)3.13 = [(-5)3]13 = (-125)13 = -12513
(-2)91 = (-2)7.13 = [(-2)7]13 = (-128)13 = -12813
Có 12513 < 12813
=> -12513 > -12813
=> (-5)39 > (-2)91
Có
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
b: \(\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left(\dfrac{b}{d}\right)^4\)
\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{b^4k^4+b^4}{d^4k^4+d^4}=\dfrac{b^4}{d^4}\)
Do đó: \(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=bk\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k.k=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}k^2\)(2)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\dfrac{ac}{a^2+c^2}=\dfrac{bd}{b^2+d^2}\)
1. a, Ta có: \(2^{24}=2^{3^8}=8^8\)
Lại có: \(3^{16}=3^{2^8}=9^8\)
Vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b, Ta có: \(5^{300}=5^{3^{100}}=125^{100}\)
Lại có: \(3^{500}=3^{5^{100}}=243^{100}\)
Vì \(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)
c, Ta có: \(2^{700}=2^{7^{100}}=128^{100}\)
Lại có: \(5^{300}=5^{3^{100}}=125^{100}\)
Vì \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
d, Ta có: \(2^{400}=2^{2^{200}}=4^{200}\)
\(\Rightarrow2^{400}=4^{200}\)
e, Ta có: \(99^{20}=99^{2^{10}}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
Bài 1:
a) Ta có: 224 = (23)8 = 88 ; 316 = (32)8 = 98
Vì 8 < 9 nên 88 < 98
Vậy 224 < 316.
b) Ta có: 5300 = (53)100 =125100 ; 3500 = (35)100 = 243100
Vì 125 < 243 nên 125100 < 243100
Vậy 5300 < 3500.
c) Ta có: 2700 = (27)100 = 128100; 5300 = (53)100 = 125100
Vì 128 > 125 nên 128100 > 125100
Vậy 2700 > 5300.
d) (làm tương tự)
Vậy 2400 = 4200.
e) (tương tự)
Vậy 9920 < 999910.
f) Ta có: 321 = 320. 3 = 910. 3 ; 231 = 230. 3 = 810. 2
Vì 910 > 810 ; 3 > 2
Nên 910. 3 > 810. 2
Vậy 321 > 231.
Bài 2: phương trình dễ ợt :v
dễ mà
a, tách ra (đừng có ghi từ này vào nha)
(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
Vì a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2
=>(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
b,
Ta có :a^4+b^4+c^4=2.(ab+bc+ca)^2
mà 2.(ab+bc+ca)^2=2.(ab+bc+ca)^2
=>a^4+b^4+c^4=2.(ab+bc+ca)^2