Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
2. GTLN
có A= x - |x|
Xét x >= 0 thì A= x - x = 0 (1)
Xét x < 0 thì A=x - (-x) = 2x < 0 (2)
Từ (1) và (2) => A =< 0
Vậy GTLN của A bằng 0 khi x >= 0
Bài1:
\(C=x^2+3\text{|}y-2\text{|}-1\)
Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)
=>\(x^2+3\text{|}y-2\text{|}>=0\)
Hay C>=0 với mọi x;y
Để C=0 thì \(x^2=0\) và \(\text{|}y-2\text{|}=0\)
=>\(x=0vày-2=0\)
=>\(x=0và.y=2\)
Vậy....
1. a, Ta có: \(2^{24}=2^{3^8}=8^8\)
Lại có: \(3^{16}=3^{2^8}=9^8\)
Vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b, Ta có: \(5^{300}=5^{3^{100}}=125^{100}\)
Lại có: \(3^{500}=3^{5^{100}}=243^{100}\)
Vì \(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)
c, Ta có: \(2^{700}=2^{7^{100}}=128^{100}\)
Lại có: \(5^{300}=5^{3^{100}}=125^{100}\)
Vì \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
d, Ta có: \(2^{400}=2^{2^{200}}=4^{200}\)
\(\Rightarrow2^{400}=4^{200}\)
e, Ta có: \(99^{20}=99^{2^{10}}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
Bài 1:
a) Ta có: 224 = (23)8 = 88 ; 316 = (32)8 = 98
Vì 8 < 9 nên 88 < 98
Vậy 224 < 316.
b) Ta có: 5300 = (53)100 =125100 ; 3500 = (35)100 = 243100
Vì 125 < 243 nên 125100 < 243100
Vậy 5300 < 3500.
c) Ta có: 2700 = (27)100 = 128100; 5300 = (53)100 = 125100
Vì 128 > 125 nên 128100 > 125100
Vậy 2700 > 5300.
d) (làm tương tự)
Vậy 2400 = 4200.
e) (tương tự)
Vậy 9920 < 999910.
f) Ta có: 321 = 320. 3 = 910. 3 ; 231 = 230. 3 = 810. 2
Vì 910 > 810 ; 3 > 2
Nên 910. 3 > 810. 2
Vậy 321 > 231.
Bài 2: phương trình dễ ợt :v
\(6x^{n+2}-4x^n+3x^{n+2}-5x^n+x^{n+2}-x^n=0\)
\(\left(6x^{n+2}+3x^{n+2}+x^{n+2}\right)+\left(-4x^n-5x^n-x^n\right)=0\)
\(x^{n+2}\left(6+3+1\right)+x^n\left(-4-5-1\right)=0\)
\(10x^{n+2}+\left(-10\right)x^n=0\)
\(10x^n.x^2+\left(-10\right)x^n=0\)
\(x^n\left(10x^2-10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^n=0\\10x^2-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\left(n\in N\circledast\right)\\10x^2=10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\end{matrix}\right.\)
Vậy...
C1:P(x)-Q(x)=0=>(2x+5)-(5x+15)=0
2x+5-5x-15=0
2x-5x+5-15=0
-3x+5=15
-3x=10
=>x=10/-3
b,2x+10=0=>2x=-10=>x=-5
3x-0.5=0=>3x=0.5=>x=1/6
3x2-4x=0=>x(3x-4)=0=>x=0 hoặc 3x-4=0=>x=4/3
C2:A(x)-B(x)=0,7x4+0,2x2-5+0,3x4-1/5x2-8
=x4+3
vì x4luôn dương=>x4+3 luôn dương
C3:a là nghiệm của Q(x) khi x=a thì Q(x)=0
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
\(=\dfrac{5x+y-2z}{50+6-10}=\dfrac{8}{46}=\dfrac{4}{43}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{43}.10=\dfrac{40}{43}\\y=\dfrac{4}{43}.6=\dfrac{24}{43}\\z=\dfrac{4}{43}.5=\dfrac{20}{43}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}=\dfrac{5x+y-2z}{50+6-10}=\dfrac{4}{23}\)
Do \(\left\{{}\begin{matrix}\dfrac{5x}{50}=\dfrac{4}{23}\\\dfrac{y}{6}=\dfrac{4}{23}\\\dfrac{2z}{10}=\dfrac{4}{23}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{40}{23}\\y=\dfrac{24}{23}\\z=\dfrac{20}{23}\end{matrix}\right.\).
Vậy ...
Hình bạn tự vẽ nha!
Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).
M A B C G
Gọi G là điểm đối xứng qua với A qua M.
Vì \(AM=4\Rightarrow\) \(AG=AM+MG=4+4=8\left(cm\right)\)
Vì \(AB=6\Rightarrow CG=6\)
\(\Rightarrow ABGC\) là hình bình hành.
Áp dụng định lý pitago ở \(\Delta ACG\) có:
\(AC^2=GA^2+GC^2\)
\(\Rightarrow10^2=6^2+8^2\)
\(\Rightarrow100=100\) (đúng)
\(\Rightarrow\Delta AGC\) vuông tại G
\(\Rightarrow\widehat{AGC}=90^o\)
\(\Rightarrow\widehat{MAB}=90^o\) (do A đối xứng với G qua M)
thuylinh1542004
Thái Thị Thùy Linh