K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:
a. Trong tam giác $ABC$ có $AC> AB$, mà $\widehat{B}$ đối diện cạnh $AC$, $\widehat{C}$ đối diện $AB$ nên $\widehat{B}> \widehat{C}$

b. Có:

$\widehat{B}=90^0-\widehat{BAH}=\widehat{HAC}$

$\widehat{C}=90^0-\widehat{HAC}=\widehat{BAH}$

c.

Xét tam giác $ABH$ vuông tại $H$ có $AB$ là cạnh huyền, $AH$ là cạnh góc vuông nên $AB> AH$

Xét tam giác $ACH$ vuông tại $H$ có $AC$ là cạnh huyền, $AH$ là cạnh góc vuông nên $AC> AH$

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Hình vẽ:

18 tháng 5 2017

sorry , em ko biết đâu , em mới học lớp 5 thui

18 tháng 5 2017

đã học lớp 5 rùi á

12 tháng 3 2016

HÌnh vẽ đây mọi người ơi

A B C H

12 tháng 3 2016

= nhau đó

14 tháng 4 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC ta có ∠AC > ∠AB (gt)

Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)

Trong ΔAHB có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong ΔAHC có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .