Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔABC ta có ∠AC > ∠AB (gt)
Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)
Trong ΔAHB có ∠(AHB) = 90o
Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)
Trong ΔAHC có ∠(AHC) = 90o
Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)
Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .
Trong ΔABC ta có AC > AB (gt)
Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)
Trong ΔAHB có ∠(AHB) = 90o
Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)
Trong ΔAHC có ∠(AHC) = 90o
Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)
Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .
Goi F la giao diem cua BE va AH, I la giao diem cua BE va AD
ta co: goc ABC+ goc ACB=90 ( tam giac ABC vuong tai A)
goc HAC+ goc ACB=90 ( tam giac AHC vuong tai H)
===> goc ABC= goc HAC
ta co : goc HAD=1/2 goc HAC ( AD la tia p/g goc HAC)
goc FBH=1/2 goc ABC ( BE la tia p/g goc ABC )
goc ABC= goc HAC ( cmt)
--> goc HAD= goc FBH
ta co: goc BFH+ goc FBH =90 ( tam giac FBH vuong tai H)
goc FBH= goc HAD ( cmt)
goc BFH= goc AFI ( 2 goc doi dinh)
===> goc HAD+ goc AFI =90 hay goc FAI+ goc AFI=90
xet tam giac AFI ta co: goc AFI+ gic FAI+ goc AIF=180 ( tong 3 goc trong tamgiac )
ma goc AFI+ goc FAI =90 ( cmt )
nen 90+ goc AIF =180
--> goc AIF =180-90=90
--> AI vuong goc FI hay BE vuong goc AD tai I
A B C H 1 2
Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)
Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )
\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)
Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
A B C H E
Trên HC lấy điểm E sao cho HB=HE.
Suy ra E nằm giữa H và C vì HE<HC.
Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.
\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)
Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)
Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)
Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!
a) Xét ∆ABC có : AB< AC
=> ACB < ABC
Xét ∆AHC có :
AHC + HCA + CAH = 180°
=> CAH = 90° - ACH (1)
Xét ∆AHB coa :
AHB + HBA + BAH = 180°
=> BAH = 90° - ABH
Mà ACB < ABC
=> BAH < HAC
b) Vì AH \(\perp\)BC
BH = HD
=> AH là trung trực ∆ABD
=> ∆ABD cân tại A
a) Xét ∆ABC có : AB< AC
=> ACB < ABC
Xét ∆AHC có :
AHC + HCA + CAH = 180°
=> CAH = 90° - ACH (1)
Xét ∆AHB coa :
AHB + HBA + BAH = 180°
=> BAH = 90° - ABH
Mà ACB < ABC
=> BAH < HAC
b) Vì AH ⊥⊥BC
BH = HD
=> AH là trung trực ∆ABD
=> ∆ABD cân tại A
sorry , em ko biết đâu , em mới học lớp 5 thui
đã học lớp 5 rùi á