Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K M N I
a) Dễ thấy tứ giác AHDK là hình vuông => AH = AK = DH = DK
Áp dụng hệ quả ĐL Thales ta có các tỉ số \(\frac{HM}{KA}=\frac{MD}{KC}\left(=\frac{BM}{BK}\right)\)
Hay \(\frac{HM}{MD}=\frac{KA}{KC}=\frac{DB}{DC}=\frac{BH}{HA}\) (đpcm).
b) Từ câu a ta có \(\frac{MH}{MD}=\frac{KA}{KC}\). Do \(\frac{KA}{KC}=\frac{NH}{NC}\)(ĐL Thales) nên \(\frac{MH}{MD}=\frac{NH}{NC}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)DHC ta được MN // CD hay MN // BC (đpcm).
c) Từ hệ quả ĐL Thales dễ có \(\frac{DM}{DH}=\frac{CK}{CA}=\frac{DK}{BA}=\frac{KN}{AH}\)
Mà DH = AH (cmt) nên DM = KN. Kết hợp với ^MDK = ^NKA (=900); DK = KA
Suy ra \(\Delta\)MKD = \(\Delta\)NAK (c.g.c) => ^MKD = ^NAK
Ta thấy ^MKD + ^AKM = 900 => ^NAK + ^AKM = 900 => MK vuông góc AN
Hoàn toàn tương tự ta cũng có NH vuông góc AM. Từ đó I là trực tâm \(\Delta\)MAN
=> AI vuông góc MN. Lại có MN // BC (câu b) nên AI vuông góc BC (đpcm).