K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H E F 1 2

a) Vì AH \(\perp\) BC (gt)

=> \(\widehat{AHB}=\widehat{AHC}=90^o\) (ĐN 2 đường thẳng \(\perp\))

Ta có: \(\widehat{C}+\widehat{A_1}=90^o\) (\(\Delta\)AHC vuông tại H do \(\widehat{AHC}=90^o\))

\(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\widehat{BAC}=90^o\) do \(\Delta\)ABC vuông tại A)

=> \(\widehat{C}=\widehat{A_2}\)

Xét \(\Delta\)AHB và \(\Delta\)CHA có:

\(\widehat{AHB}=\widehat{AHC}\) (cmt)

\(\widehat{C}=\widehat{A_2}\) (cmt)

=> \(\Delta\)AHB ~ \(\Delta\)CHA (g.g)

b) Xét \(\Delta\)ABH và \(\Delta\)CBA có:

\(\widehat{ABC}=\widehat{AHB}\left(=90^o\right)\)

\(\widehat{B}\): chung

=> \(\Delta\)ABH ~ \(\Delta\)CBA(g.g)

=> \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (ĐN 2 \(\Delta\) ~)

=> \(AB\cdot CA=AH\cdot CB\) (t/c TLT)

c) Xét \(\Delta\)ABC vuông tại A (gt) có:

\(AB^2+AC^2=BC^2\) (ĐL Pi-ta-go)

=> \(BC^2=9^2+12^2=225\)

=> BC = 15cm

Ta có: \(\dfrac{AB}{CB}=\dfrac{AH}{CA}\) (cmt)

=> \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7,2cm\)

Xét \(\Delta\)AHB vuông tại H (cmt) có:

\(AH^2+HB^2=AB^2\) (ĐL Pi-ta-go)

=> \(BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

=> BH = 5,4cm

Lại có: \(HC=BC-BH=15-5,4=9,6\)cm

20 tháng 3 2018

thật sự là đang làm

nhưng thôihuhu

23 tháng 6 2020

Mk sửa lại đề câu d nha : chứng minh : AE.AB + AF.AC = 2.AH2

Bạn tự vẽ hình nha :

Xét \(\Delta AEH\) \(\Delta AHB\) có :

\(\widehat{A}:chung\)

\(\widehat{AEH}=\widehat{AHB}=90^o\)

\(\Rightarrow\) \(\Delta AEH\sim\Delta AHB\left(g.g\right)\)

\(\Rightarrow\) \(\frac{AE}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AE.AB=AH^2\) (1)

Xét \(\Delta AFH\) \(\Delta AHC\) có :

\(\widehat{A}:chung\)

\(\widehat{AFH}=\widehat{AHC}=90^o\)

\(\Rightarrow\) \(\Delta AFH\sim\Delta AHC\left(g.g\right)\)

\(\Rightarrow\) \(\frac{AF}{AH}=\frac{AH}{AC}\) \(\Rightarrow\) \(AF.AC=AH^2\) (2)

Từ (1) và (2), cộng vế theo vế, ta có :

\(AE.AB+AF.AC=2.AH^2\)

\(\Rightarrow\) đpcm

23 tháng 6 2020

cảm ơn bn nhiều nha

7 tháng 5 2018

a,Xét \(\Delta AEHvà\Delta AHB\) có:

\(\widehat{HAB}=\widehat{AEH}=90^o\)

\(\widehat{EAH}chung\)

Do đó \(\Delta AEH\sim\Delta AHB\)(g.g)

b, Từ câu a, Suy ra:

\(\dfrac{AE}{AH}=\dfrac{AH}{HB}\)

\(\Rightarrow AH^2=AE.HB\)(1)

Xét \(\Delta AHCvà\Delta AFH\)

\(\)\(\widehat{HAF}=\widehat{AFH}=90^o\)

\(\widehat{HAF}chung\)

Do đó \(\Delta AHC\sim\Delta AFH\)

=> \(\Rightarrow AH^2=AF.AC\)(2)

Từ (1);(2) Suy ra

đpmm

c, từ câu b \(\dfrac{AE}{AF}=\dfrac{AC}{AB}\)

=> đpcm (đảo talet nhé)

24 tháng 4 2018

dễ quá mai mình làm cho

giờ ngủ đây

21 tháng 3 2018

e) Kẻ BỎ cắt AN tại M BM vuông góc AN ;kéo dài NO cắt AB Ở I BOH =AOM đối đỉnh AMO-AOM =90 -AOM =OAM . OHB-BOH=90-BOH=OBH ➙OĂM=OBH (1) ➙△AOM=△BOH ➙ OA=BỔ ➙△ AOI =BỞI ( CẠNH HUYỀN CẠNH GOCD VG) → IAO=IBO (2) TỪ 1VÀ 2 OÀM+OẢI=BỞI+BOH ➜MỚI=IBH ➜ Δ ABN là tam giác cân ➜ OI vg góc AB MÀ CÓ AH VG GOC BC➜O là trực tâm của tam giác ABN ➙BM VG GÓC AN HAY AN vgBO

21 tháng 3 2018

đề bài sai??

ý c sao lại vẽ AH vuông góc với AB tại E, phải là EH vuông với AB tại E chứ nhỉ?

17 tháng 2 2019

a, \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)

b, \(\Delta AEH\infty\Delta AHB\left(g.g\right)\Rightarrow\frac{AE}{AH}=\frac{AH}{AB}\Rightarrow AE.AB=AH^2\)

c, \(\Delta AFH\infty\Delta AHC\Rightarrow\frac{AF}{AH}=\frac{AH}{AC}\Rightarrow AH^2=AF.AC\)

d, \(AE.AB=AF.AC\left(=AH^2\right)\Rightarrow\frac{AB}{AF}=\frac{AC}{AE}\)

\(\Delta ABC\infty\Delta AFE\left(c.g.c\right)\)

e, \(AH^2=AE.AB\Rightarrow\left(4,8\right)^2=AE.6\Rightarrow AE=3,84\left(cm\right)\)

\(AH^2=AF.AC\Rightarrow\left(4,8\right)^2=AF.8\Rightarrow AF=2,88\left(cm\right)\)

Vậy \(S_{BCFE}=S_{ABC}-S_{AEF}=\frac{1}{2}AB.AC-\frac{1}{2}AE.AF=\frac{1}{2}.6.8-\frac{1}{2}.3,84.2,88=18,4704\left(cm^2\right)\)