Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M,N lần lượt là trung điểm GC, AB và M', N' lần lượt là hình chiếu của M và N trên d.
Ta có G là trọng tâm của ΔABCΔABC nên ⇒GM=MC=NG⇒GM=MC=NG
Từ hình thang GG'CC': GM=MC ,MM′//GG′(⊥d)
Do đó MM′ là đường trung bình của hình thang GG′CC′
⇒2MM′=GG′+CC′ 1
Tương tự với hình thang BB′AA′ ta được 2NN′=BB′+AA′(2)
và hình thang NN′M′M được 2GG′=NN′+MM′ 3
Từ (1),(2),(3) ta được
⇔4GG′−GG′=CC′+BB′+AA′
⇔3GG′=CC′+BB′+AA′(đpcm)
Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:
Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.
C/m C'AIC là hcn=> Góc BAD = 90 độ
=> CC'= AI
Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx
=> I là trung điểm của AD=> 2AI=AD
=> 2CC'=AD.
=> AB2+ AD2= BD2( Đlí PTG)
Ta có: Với 3 điểm B,C,D thì sẽ luôn có: (BD+CD)2>= BD2
Có: AB2+ AD2=BD2
=> (BD+CD)2>= AB2+ AD2
=> (BD+CD)2>= AB2+ (2CC')2
=> (BD+CD)2>= AB2+ 4CC'
=> (BD+CD)2- AB2>= 4CC'(1)
CMTT=> (AB+AC)2-BC2>= 4AA'(2)
và (AB+BC)2- AC2>= 4BB'(3)
Từ (1),(2) và (3) ta chứng minh đc:
(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)
=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC
=> GTNN là 4 khi tam giác ABC đều.