K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2022

Gọi M,N lần lượt là trung điểm GC, AB và M', N' lần lượt là hình chiếu của M và N trên d.

Ta có G là trọng tâm của ΔABCΔABC nên ⇒GM=MC=NG⇒GM=MC=NG

Từ hình thang GG'CC': GM=MC ,MM′//GG′(⊥d)

Do đó MM′ là đường trung bình của hình thang GG′CC′

⇒2MM′=GG′+CC′   1

Tương tự với hình thang BB′AA′ ta được 2NN′=BB′+AA′(2)

và hình thang NN′M′M được 2GG′=NN′+MM′   3

Từ (1),(2),(3) ta được

⇔4GG′−GG′=CC′+BB′+AA′

⇔3GG′=CC′+BB′+AA′(đpcm)

Hỏi đáp Toán

gọi M,N lần lượt là trung điểm của GC, AB.

M', N' lần lượt là hình chiếu của M và N trên d.

ta có G là trọng tâm của tam giác ABC

\(\Rightarrow GM=MC=NG\)

hình thang GG'C'C : \(\left\{{}\begin{matrix}GM=MC\\MM'\text{//}GG'\left(\perp d\right)\end{matrix}\right.\)

do đó MM' là dg trung bình của hình thang GG'C'C.

\(\Rightarrow2MM'=GG'+CC'\)(1)

tương tự, hình thang B'BAA' có: \(2NN'=BB'+AA'\)(2)

hình thang NN'M'N có: \(2GG'=NN'+MM'\)(3)

• từ (1),(2) và (3) suy ra : \(4GG'=CC'+GG'+BB'+AA'\)

\(\Leftrightarrow4GG'-GG'=CC'+BB'+AA'\\ \Leftrightarrow3GG'=CC'+BB'+AA'\left(đpcm\right)\)

15 tháng 9 2019

bạn vẽ hình ra thì đọc mới hiểu nha !

a) Ta có : BB' vuông góc với d ( giả thiết ) }

               MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )

               CC' vuông góc với d ( giả thiết )  }

Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :

 M là trung điểm BC ( AM là trung tuyến - giả thiêt ) } 

 MM' // BB' ; MM' // CC' ( chứng minh trên )             } => M' là trung điểm BB'CC' ( định lí )

Xét hình thang BB'C'C có :

 M là trung điểm BC ( AM là trung tuyến ) }

M' là trung điểm B'C' ( chứng minh trên )  } => MM' là đường trung bình của hình thang BB'C'C ( định lí )

                                                                     => MM' = BB' + CC' / 2 ( định lí )

ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!

29 tháng 6 2017

Đường trung bình của tam giác, hình thang