Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = 3 ; b = 2 ; c = 7
Ta có :
3 . 2 + 1 = 7 chia hết cho 7
2 . 7 + 1 = 15 chia hết cho 3
7 . 3 +1 = 22 chia hết cho 2
bài này khó ................................................................
ba số đó là 1 < a < b < c.ta có
ab + 1 chia hết cho c, bc + 1 chia hết cho a, ca + 1 chia hết cho b
Từ đó suy ra (ab+1)(bc+1)(ca+1) chia hết cho abc
Suy ra ab + bc + ca +1 chia hết cho abc
Tức là ab + bc + ca + 1 = kabc với k là số nguyên dương.
=> 1/a + 1/b +1/c + 1/abc = k
Vì 1 < a < b < c nên VT < 1/2 + 1/3 + 1/4 + 1/24 < 2 suy ra k chỉ có thể là 1.
Nếu a ³ 3 thì b ³ 4, c ³ 5 và ta có VT £ 1/3 + 1/4 + 1/5 + 1/60 < 1 không thể là số nguyên. Vậy a chỉ có thể là 2. Nếu b ³ 4 thì c ³ 5 và ta có VT < 1/2 + 1/4 + 1/5 + 1/40 < 1. Vậy b chỉ có thể là 3. Thay vào phương trình, ta được 1/2 + 1/3 + 1/c + 1/6c = 1 => c = 7. Vậy có bộ ba số duy nhất thoả mãn đề bài là (2, 3, 7).
con ko biết thư có lm đúng ko nữa nên nếu lm đúng thi olm tick cho thư 1 cái đi
Kết luận (a ; b ; c) = (2 ; 3 ; 7)
Xem lời giải thì bấn vào dòng chữ màu xanh này Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(b,a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)
Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)
Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)
mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)
Câu a để nghĩ tiếp
Đặt A = 3a + 2b; B = 10a + b
Xét biểu thức: 2B - A = 2.(10a + b) - (3a + 2b)
= (20a + 2b) - (3a + 2b)
= 20a + 2b - 3a - 2b
= 17a
+ Nếu A chia hết cho 17, do 17a chia hết cho 17 => 2B chia hết cho 17
Mà (2;17)=1 => B chia hết cho 17
+ Nếu B chia hết cho 17 => 2B chia hết cho 17, do 17a chia hết cho 17
=> A chia hết cho 17
Vậy 3a + 2b chia hết cho <=> 10a + b chia hết cho 17 (a,b thuộc Z) (đpcm)
taco;17achia het cho17
suy ra 17a+3a+2b chia het cho17
suy ra20a+2bchia het cho17
rút gọn cho 2
suyra 10a+b chia hết cho 17
B = a3 + b3 + c3 - ( a + b + c )
= a3 + b3 + c3 - a - b - c
= ( a3 - a ) + ( b3 - b ) + ( c3 - c )
= a( a2 - 1 ) + b( b2 - 1 ) + c( c2 - 1 )
= ( a - 1 )a( a + 1 ) + ( b - 1 )b( b + 1 ) + ( c - 1 )c( c + 1 )
Vì ( a - 1 ) ; a ; ( a + 1 ) là ba số nguyên liên tiếp
=> sẽ có 1 số ⋮ 2 và 1 số ⋮ 3
mà (2;3) = 6 => ( a - 1 )a( a + 1 ) ⋮ 6
CMTT ta có được ( b - 1 )b( b + 1 ) ⋮ 6 và ( c - 1 )c( c + 1 ) ⋮ 6
=> ( a - 1 )a( a + 1 ) + ( b - 1 )b( b + 1 ) + ( c - 1 )c( c + 1 ) ⋮ 6
hay B = a3 + b3 + c3 - ( a + b + c ) ⋮ 6
\(B=a^3+b^3+c^3-\left(a+b+c\right)\)
\(=a^3+b^3+c^3-a-b-c\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)
Vì \(a\), \(a-1\), \(a+1\)là 3 số nguyên liên tiếp
\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2\)và \(a\left(a-1\right)\left(a+1\right)⋮3\)
mà \(\left(2;3\right)=1\)\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)
Chứng minh tương tự: \(b\left(b-1\right)\left(b+1\right)⋮6\), \(c\left(c-1\right)\left(c+1\right)⋮6\)
\(\Rightarrow B=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)⋮6\)
\(\Rightarrow B⋮6\)( đpcm )
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
ĐK: \(\hept{\begin{cases}a\ne-b\\b\ne-c\\c\ne-a\end{cases}}\)
Xét thương: \(\frac{a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\).Do a,b,c thuộc N nên:
\(a⋮a+b\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\) (vì \(a⋮a\)) (1)
Khi đó: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{c}{c+a}\).Giả sử \(a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)⋮\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Thì \(1+\frac{c}{c+a}\inℕ\Rightarrow\frac{c}{c+a}\inℕ\Leftrightarrow\orbr{\begin{cases}c=0\\a=0\end{cases}}\) (2)
Từ (1) và (2) suy ra: \(\orbr{\begin{cases}a=b=0\\b=c=0\end{cases}}...\left(h\right)...c=a=0\)
Suy ra \(\orbr{\begin{cases}a=-b=0\\b=-c=0\end{cases}..\left(h\right)..c=-a=0}\) (Mâu thuẫn với đk)
Từ đây suy ra điều giả sử là sai.Suy rađpcm.