K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

ĐK: \(\hept{\begin{cases}a\ne-b\\b\ne-c\\c\ne-a\end{cases}}\)

Xét thương: \(\frac{a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\).Do a,b,c thuộc N nên:

\(a⋮a+b\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\) (vì \(a⋮a\)) (1)

Khi đó: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1+\frac{c}{c+a}\).Giả sử \(a\left(b+c\right)\left(c+a\right)+b\left(c+a\right)\left(a+b\right)+c\left(a+b\right)\left(b+c\right)⋮\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Thì \(1+\frac{c}{c+a}\inℕ\Rightarrow\frac{c}{c+a}\inℕ\Leftrightarrow\orbr{\begin{cases}c=0\\a=0\end{cases}}\) (2)

Từ (1) và (2) suy ra:  \(\orbr{\begin{cases}a=b=0\\b=c=0\end{cases}}...\left(h\right)...c=a=0\) 


Suy ra \(\orbr{\begin{cases}a=-b=0\\b=-c=0\end{cases}..\left(h\right)..c=-a=0}\) (Mâu thuẫn với đk)

Từ đây suy ra điều giả sử là sai.Suy rađpcm.

20 tháng 7 2015

a = 3 ; b = 2 ; c = 7 

Ta có : 

3 . 2 + 1 = 7 chia hết cho 7

2 . 7 + 1 = 15 chia hết cho 3

7 . 3 +1 = 22 chia hết cho 2

 

21 tháng 7 2015

bài này khó ................................................................

21 tháng 7 2015

ba số đó là 1 < a < b < c.ta có

            ab + 1 chia hết cho c, bc + 1 chia hết cho a, ca + 1 chia hết cho b

Từ đó suy ra (ab+1)(bc+1)(ca+1) chia hết cho abc

Suy ra  ab + bc + ca +1 chia hết cho abc

Tức là ab + bc + ca + 1 = kabc  với k là số nguyên dương.

=>   1/a + 1/b +1/c + 1/abc = k

Vì 1 < a < b < c nên VT < 1/2 + 1/3 + 1/4 + 1/24 < 2 suy ra k chỉ có thể là 1.

Nếu a ³ 3 thì b ³ 4, c ³ 5 và ta có VT £ 1/3 + 1/4 + 1/5 + 1/60 < 1 không thể là số nguyên. Vậy a chỉ có thể là 2. Nếu b ³ 4 thì c ³ 5 và ta có VT < 1/2 + 1/4 + 1/5 + 1/40 < 1. Vậy b chỉ có thể là 3. Thay vào phương trình, ta được 1/2 + 1/3 + 1/c + 1/6c = 1 => c = 7. Vậy có bộ ba số duy nhất thoả mãn đề bài là (2, 3, 7).            

con ko biết thư có lm đúng ko nữa nên nếu lm đúng thi olm tick cho thư 1 cái đi

27 tháng 7 2015

Kết luận (a ; b ; c) = (2 ; 3 ; 7)

Xem lời giải thì bấn vào dòng chữ màu xanh này Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bài này cần dùng một ít kiến thức của lớp 8, bạn có thể tìm hiểu thêm.

undefined

27 tháng 1 2019

\(b,a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)

Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)

Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)

mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)

Câu a để nghĩ tiếp 

27 tháng 1 2019

bn làm câu b được không

11 tháng 8 2016

Đặt A = 3a + 2b; B = 10a + b

Xét biểu thức: 2B - A = 2.(10a + b) - (3a + 2b)

                               = (20a + 2b) - (3a + 2b)

                              = 20a + 2b - 3a - 2b

                              = 17a

+ Nếu A chia hết cho 17, do 17a chia hết cho 17 => 2B chia hết cho 17

Mà (2;17)=1 => B chia hết cho 17

+ Nếu B chia hết cho 17 => 2B chia hết cho 17, do 17a chia hết cho 17 

=> A chia hết cho 17

Vậy 3a + 2b chia hết cho <=> 10a + b chia hết cho 17 (a,b thuộc Z) (đpcm)

11 tháng 8 2016

taco;17achia het cho17

suy ra 17a+3a+2b chia het cho17

suy ra20a+2bchia het cho17

rút gọn cho 2

suyra 10a+b chia hết cho 17