K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Chứng minh: 2AD = AB + AC - BC 2BF = BA + CB - AC 2CE = CA + CB - AB Bài làm: Theo tính chất hai tiếp tuyến cắt nhau, ta được: AD = AE, BD = BF, CE = CF Ta có: AB + AC - BC = AD + BD + AE + CE - BF - CF = (AD + AE) + (BD - BF) + (CE - CF) = 2AD ⇒ AB + AC - BC = 2AD (đpcm). Tương tự ta chứng minh được 2BF = BA + CB - AC và 2CE = CA + CB - AB.

29 tháng 7 2020

vẽ (O') ngoại tiếp tam giác ABC. gọi M là điểm chính giữa cung BC (M và A nằm khác phía với BC). I là điểm trên cạnh BC và BI=\(\frac{2}{3}\)IC.MI cắt đường tròn (O') tại N (khác M)

ta có N cố định, NI là đường pjaan giác của tam giác NBC nên \(\frac{NB}{NC}=\frac{IB}{IC}=\frac{2}{3}\)

xét tam giác NBD và tam giác BCE có \(\hept{\begin{cases}\widehat{NBD}=\widehat{NCE}=\frac{1}{2}sđ\widebat{AN}\\\frac{NB}{NC}=\frac{BD}{CE}\left(=\frac{2}{3}\right)\end{cases}}\)

do đó tam giác NBD ~ tam giác NCE => \(\widehat{NDB}=\widehat{NEC}\)=> tứ giác ADNE nội tiếp => OA=ON

=> O thuộc đường tròn cố ddunhj là đường trung trực đoạn thẳng AN

26 tháng 4 2017

Em xem lại đề bài này nhé.

d. Do S, H cùng thuộc AH nên nếu S, H ,E thẳng hàng thì E phải thuộc AH. Cô có hình vẽ phản chứng:

Đường tròn c: Đường tròn qua C với tâm O Đường tròn d: Đường tròn qua N, O, C Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, N] Đoạn thẳng j: Đoạn thẳng [C, M] Đoạn thẳng k: Đoạn thẳng [A, E] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [O, E] Đoạn thẳng p: Đoạn thẳng [M, N] Đoạn thẳng q: Đoạn thẳng [A, D] B = (-0.48, 1.12) B = (-0.48, 1.12) B = (-0.48, 1.12) A = (1.14, 6.58) A = (1.14, 6.58) A = (1.14, 6.58) C = (7.38, 1.12) C = (7.38, 1.12) C = (7.38, 1.12) Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D