K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2017

Lời giải:

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} (a+b-c)(b+c-a)\leq \frac{(a+b-c+b+c-a)^2}{4}=b^2\\ (a+b-c)(c+a-b)\leq \frac{(a+b-c+c+a-b)^2}{4}=a^2\\ (b+c-a)(c+a-b)\leq \frac{(b+c-a+c+a-b)^2}{4}=c^2\end{matrix}\right.\)

Nhân theo vế và rút gọn, suy ra:

\((a+b-c)(b+c-a)(c+a-b)\leq abc\)

\(\Rightarrow F=\frac{(a+b-c)(b+c-a)(c+a-b)}{3abc}\leq \frac{abc}{3abc}=\frac{1}{3}\)

Vậy \(F_{\max}=\frac{1}{3}\Leftrightarrow a=b=c\)

12 tháng 8 2017

kết quả thì đúng rồi nhưng cho mình hỏi BĐT AM-GM là gì được không vậy

21 tháng 2 2019

:https://youtu.be/cs8x53kQFN4

21 tháng 2 2019

Đặt \(\hept{\begin{cases}a+b-c=x\\a+c-b=y\\b+c-a=z\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{x+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+z}{2}\end{cases}}\)

\(M=\frac{\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{3abc}\)

\(\Leftrightarrow M=\frac{xyz}{\frac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{2.2.2}}=\frac{8xyz}{3.\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Áp dụng BĐT AM-GM ta có:

\(M\le\frac{8xyz}{3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\frac{8xyz}{3.8xyz}=\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c=a+c-b\\a+c-b=b+c-a\\a+b-c=b+c-a\end{cases}\Leftrightarrow\hept{\begin{cases}b=c\\a=b\\c=a\end{cases}}}\)

Vậy \(M_{max}=\frac{1}{3}\Leftrightarrow a=b=c\)

30 tháng 7 2015

\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b-c\right)\left(a+b-c\right)}=1\)

19 tháng 3 2019

toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!

19 tháng 3 2019

Vì a,b,c là độ dài 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

         \(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)

         \(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)

          \(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)

           \(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)

Dấu "=" <=> tam giác đó đều

6 tháng 9 2020

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

7 tháng 9 2020

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

4 tháng 8 2015

\(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}\)

Là gì vậy nhỉ                   

Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\forall a,b,c\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\forall a,b,c\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\forall a,b,c\end{cases}}\)

Nhân vế với vế của 3 bất đẳng thức trên ta được : 

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\)

Mà dễ thấy \(abc>0\)

Nên từ \(\left(1\right)\) : \(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)