Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng hệ quả cô si:
\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)
=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1
không biết đúng hay sai đâu
Lời giải:
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} (a+b-c)(b+c-a)\leq \frac{(a+b-c+b+c-a)^2}{4}=b^2\\ (a+b-c)(c+a-b)\leq \frac{(a+b-c+c+a-b)^2}{4}=a^2\\ (b+c-a)(c+a-b)\leq \frac{(b+c-a+c+a-b)^2}{4}=c^2\end{matrix}\right.\)
Nhân theo vế và rút gọn, suy ra:
\((a+b-c)(b+c-a)(c+a-b)\leq abc\)
\(\Rightarrow F=\frac{(a+b-c)(b+c-a)(c+a-b)}{3abc}\leq \frac{abc}{3abc}=\frac{1}{3}\)
Vậy \(F_{\max}=\frac{1}{3}\Leftrightarrow a=b=c\)
kết quả thì đúng rồi nhưng cho mình hỏi BĐT AM-GM là gì được không vậy
Đặt \(p=\frac{a+b+c}{2}\)\(\Rightarrow b+c-a=2\left(p-a\right);a+c-b=2\left(p-b\right);a+b-c=2\left(p-c\right)\)
Ta có : \(\sqrt{p-a}.\sqrt{p-b}\le\frac{p-a+p-b}{2}=\frac{c}{2}\left(1\right)\)
Tương tự : \(\sqrt{p-b}.\sqrt{p-c}\le\frac{a}{2}\left(2\right)\); \(\sqrt{p-c}.\sqrt{p-a}\le\frac{b}{2}\left(3\right)\)
Nhân (1) , (2) , (3) theo vế được : \(\left(p-a\right).\left(p-b\right).\left(p-c\right)\le\frac{abc}{8}\Rightarrow\frac{abc}{2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)}\ge1\Rightarrow\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}\ge1\)Vậy \(MinQ=1\Leftrightarrow a=b=c\Leftrightarrow\)Tam giác đó là tam giác đều.
Do a,b,c là ba cạnh của tam giác nên ta có : a + b - c > 0; a +c-b>0; b+c-a>0
ta có: \(\sqrt{a+b-c}.\sqrt{a+c-b}=\sqrt{a^2-\left(b-c\right)^2}\le\sqrt{a^2}=a\left(1\right).\\ \)
tương tự ta có : \(\sqrt{b+c-a}.\sqrt{a+b-c}\le b.\left(2\right)\)
\(\sqrt{a+c-b}.\sqrt{b+c-a}\le c\left(3\right).\)
Nhân vế với vế của (1) (2) và (3) ta được : \(\left(b+c-a\right).\left(a+c-b\right).\left(a+b-c\right)\le abc.\)
=>\(\frac{abc}{\left(b+c-a\right).\left(a+c-b\right).\left(a+b-c\right)}\ge\frac{abc}{abc}=1\)
Vậy Qmin = 1 khi a = b = c .
2) Ta có: Áp dụng bất đẳng thức:
\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)
Tương tự chứng minh được:
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế 3 bất đẳng thức trên với nhau ta được:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c\)
\(VT=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\sqrt{\frac{\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2}{64}}\)
\(VT=\frac{\sqrt{\left(b+c-a\right)\left(a+c-b\right)}.\sqrt{\left(a+c-b\right)\left(a+b-c\right)}.\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}{8}\)
Ta có :
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=\frac{2c}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=\frac{2a}{2}=a\)
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)
\(\Rightarrow\)\(VT\le\frac{abc}{8}\) ( đpcm )
Chúc bạn học tốt ~
Vì a,b,c là độ dài 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)
\(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)
\(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)
\(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)
\(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)
Dấu "=" <=> tam giác đó đều
:https://youtu.be/cs8x53kQFN4
Đặt \(\hept{\begin{cases}a+b-c=x\\a+c-b=y\\b+c-a=z\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{x+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+z}{2}\end{cases}}\)
\(M=\frac{\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{3abc}\)
\(\Leftrightarrow M=\frac{xyz}{\frac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{2.2.2}}=\frac{8xyz}{3.\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Áp dụng BĐT AM-GM ta có:
\(M\le\frac{8xyz}{3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\frac{8xyz}{3.8xyz}=\frac{1}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c=a+c-b\\a+c-b=b+c-a\\a+b-c=b+c-a\end{cases}\Leftrightarrow\hept{\begin{cases}b=c\\a=b\\c=a\end{cases}}}\)
Vậy \(M_{max}=\frac{1}{3}\Leftrightarrow a=b=c\)