K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

áp dụng cô si cho ..............

7 tháng 5 2015

Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

               \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b

=> \(\frac{a}{b+c}<1;\frac{b}{c+a}<1;\frac{c}{b+a}<1\)

\(\frac{a}{b+c}<1\Rightarrow\frac{a}{b+c}<\frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)

tương tự, \(\frac{b}{c+a}<\frac{2b}{a+b+c};\frac{c}{a+b}<\frac{2c}{a+b+c}\)

=> \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)

Từ (1)(2) => đpcm

8 tháng 5 2022

Cho a b c là độ dài dài ba cạnh của một tam giác chứng mình rằng a/b+c+b/c+a+c/a+b

16 tháng 9 2017

Vì a:b:c là độ dài  cạnh tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)

Áp dụng bđt AM - GM ta có :

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)(1)

\(\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le\frac{a+b-c+c+a-b}{2}=\frac{2a}{2}=a\)(2)

\(\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le\frac{b+c-a+c+a-b}{2}=\frac{2c}{2}=c\)(3)

Nhân vế với vế của (1); (2);(3) lại ta được :

\(\sqrt{\left(a+b-c\right)^2\left(b+c-a\right)^2\left(c+a-b\right)^2}\le abc\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)