K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
31 tháng 10 2024
Lời giải:
Xét hiệu: $a^2+b^2+c^2-(ab+bc+ac)=\frac{2a^2+2b^2+2c^2-2(ab+bc+ac)}{2}=\frac{(a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)}{2}=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c>0$
$\Rightarrow a^2+b^2+c^2\geq ab+bc+ac(1)$
Lại có:
Do $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:
$a< b+c$
$\Rightarrow a^2< a(b+c)$
Tương tự: $b^2< b(a+c); c^2< c(a+b)$
Cộng theo vế các BĐT trên: $a^2+b^2+c^2< a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)(2)$
Từ $(1); (2)$ ta có đpcm.
NA
0
NA
1
Vì a:b:c là độ dài cạnh tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)
Áp dụng bđt AM - GM ta có :
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)(1)
\(\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le\frac{a+b-c+c+a-b}{2}=\frac{2a}{2}=a\)(2)
\(\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le\frac{b+c-a+c+a-b}{2}=\frac{2c}{2}=c\)(3)
Nhân vế với vế của (1); (2);(3) lại ta được :
\(\sqrt{\left(a+b-c\right)^2\left(b+c-a\right)^2\left(c+a-b\right)^2}\le abc\)
\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)