K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây

 

24 tháng 12 2018

kết quả

                                            

//h.vn/hoi-dap/question/21757.html

24 tháng 12 2018

mk k hiểu

16 tháng 10 2018

Ta có \(a^2+b^2=c^2+d^2\)   

<=> a+b+c2 +d= 2(c+d2)\(⋮2\)(1)

Mặt khác (a+ b+ c2 +d2) - (a+b+c+d)= a2 -a +b- b +c-c +d2-d= a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮2\)(2)

Từ (1) và (2) suy ra a+b+c+d \(⋮2\)

 mà a, b, c, d là các số tự nhiên khác 0 nên a+b+c+d>2. Do đó a+b+c+d là hợp số

Cảm ơn bạn nhèo <3

8 tháng 1 2024

\(a^2+c^2=b^2+d^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)

Ta có

\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy 

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2

\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)

\(\Rightarrow a+b+c+d⋮2\)

Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2

=> a+b+c+d là hợp số

8 tháng 1 2024

A = [(a +b) + (c + d)].[(a + b) + (c + d)]

A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)

A  = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2

A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd

A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]

A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]

⇒ A ⋮ 2  ⇒ a + b + c + d  ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2

Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)

 

28 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

\(\implies\) \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)

  

11 tháng 3 2020

xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho

17 tháng 4 2017

KHOAN ĐÃ LỚP 6 ĐÃ HỌC HẰNG ĐẲNG THỨC SỐ 5 ĐÂU LỚP 8 MỚI HỌC MÀ

17 tháng 4 2017

Đây là đề thi học sinh giỏi môn toán cấp huyện.

30 tháng 7 2015

c/abcabc=1000.abc+abc=1001.abc chia hết cho 7;11;13

b/ababab=ab.10000+ab.100+ab=ab.10101 chia hết cho 7

a/abba=a.1000+b.100+b.10+a=a.1001+b.110 chia hết cho 11

31 tháng 7 2015

a/ abba=a.1000+b.100+b.10+a=a.1001+b.110 chia hết cho 11