Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)
\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)
Cộng theo vế hai bất đẳng thức trên ta được:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)
Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Leftrightarrow\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{1}{2\sqrt{2}}\left(\sqrt{2}.\sqrt{a^2+b^2}+\sqrt{2}.\sqrt{b^2+c^2}+\sqrt{2}.\sqrt{c^2+a^2}\right)\)
\(VT\ge\sqrt{2}.\frac{9}{2\left(a+b+c\right)}\ge\sqrt{2}.\frac{9}{2\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{3\sqrt{2}}{2}\left(1\right)\)
\(VP\le\frac{1}{2\sqrt{2}}.\frac{2\left(a^2+b^2+c^2\right)+6}{2}=\frac{3\sqrt{2}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge VP\)
Dấu \("="\) xảy ra khi \(a=b=c=1\)
Chỉ đúng trong trường hợp các số thực dương (kì lạ là các bạn rất thích quên điều kiện này khi đăng đề lên)
a/ \(\frac{a^3}{b^2}+a\ge2\sqrt{\frac{a^4}{b^2}}=\frac{2a^2}{b}\) ; \(\frac{b^3}{c^2}+b\ge\frac{2b^2}{c}\); \(\frac{c^3}{a^2}+c\ge\frac{2c^2}{a}\)
Cộng vế với vế:
\(VT+a+b+c\ge2VP\Rightarrow VT\ge2VP-\left(a+b+c\right)\)
Mà \(2VP=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{\left(a+b+c\right)^2}{a+b+c}\)
\(\Rightarrow2VP\ge VP+a+b+c\)
\(\Rightarrow2VP-\left(a+b+c\right)\ge VP\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi \(a=b=c\)
Câu dưới tương tự:
\(\frac{a^5}{b^3}+a^2+a^2\ge\frac{3a^3}{b}\) , làm tương tự với 2 cái còn lại và cộng lại:
\(\Rightarrow VT+2\left(a^2+b^2+c^2\right)\ge3\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)=3\left(\frac{a^4}{ab}+\frac{b^4}{ca}+\frac{c^4}{ab}\right)\ge\frac{3\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow VT\ge a^2+b^2+c^2\)
Dấu "=" xảy ra khi \(a=b=c\)
Sử dụng BĐT Cauchy-Schwarz ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Ta sẽ chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{9}{a+b+c}\le\frac{3}{ab+bc+ca}+2\)
Đặt a+b+c=t ta cần chứng minh \(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=1
Ok thanks, mặc dù ngay chỗ cuối đúng thì phải là (2t+3)(t-3)2 >= 0
Nhưng hiểu rồi là OK :)