Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)
\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)
Cộng theo vế hai bất đẳng thức trên ta được:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)
Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)
Cho bài toán phụ : Cho a ; b là các số thực dương
C/m : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
Do a ; b là các số thực dương \(\Rightarrow ab\ge1\)
Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
\(\Leftrightarrow\frac{1}{a^2+1}-\frac{1}{ab+1}+\frac{1}{b^2+1}-\frac{1}{ab+1}\ge0\)
\(\Leftrightarrow\frac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\frac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{ab^3-a^2b^2+ab-a^2+a^3b-a^2b^2+ab-b^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{ab\left(a^2+b^2\right)+2ab-2a^2b^2-a^2-b^2}{...}\ge0\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(ab-1\right)-2ab\left(ab-1\right)}{...}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{...}\ge0\)
Dễ thấy mẫu luôn dương , tử \(\ge0\) => luôn đúng
=> BĐT được c/m
Áp dụng BĐT phụ ( từ bài toán phụ trên ) , ta có :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)
( * )
Có : \(\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}=\frac{4c^2+2ab+6-3abc^2-3c^2-3ab-3}{...}=\frac{c^2+3-ab-3abc^2}{...}=\frac{c^2+bc+ac-3abc^2}{...}=\frac{c\left(a+b+c-3abc\right)}{...}\)\(\left(ab+bc+ac=3\right)\) ( 1 )
Do a , b , c là các số thực dương , áp dụng BĐT Cô - si cho 3 số , ta có : \(\left(a+b+c\right)\left(ab+bc+ac\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)
\(\Rightarrow a+b+c\ge3abc\left(ab+bc+ac=3\right)\) ( 2 )
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}-\frac{3}{2}\ge0\)
\(\Rightarrow\frac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\frac{3}{2}\) ( *' )
Từ (*) và (*') => ĐPCM
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
\(\Rightarrow\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}\cdot\frac{b+c}{4bc}}=\frac{1}{a}\)
\(\Rightarrow\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge2\sqrt{\frac{ca}{b^2\left(c+a\right)}\cdot\frac{c+a}{4ca}}=\frac{1}{b}\)
\(\Rightarrow\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}\cdot\frac{a+b}{4ab}}=\frac{1}{c}\)
Cộng theo vế các bất đẳng thức trên ta được:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}+\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)nên:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Bất đẳng thức xảy ra khi \(a=b=c\)
Áp dụng bđt AM-GM:
\(\frac{1}{a^3\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a\left(b+c\right)}{4a^3\left(b+c\right)}}=\frac{1}{a}\)
\(\frac{1}{b^3\left(c+a\right)}+\frac{b\left(c+a\right)}{4}\ge2\sqrt{\frac{b\left(c+a\right)}{4b^3\left(c+a\right)}}=\frac{1}{b}\)
\(\frac{1}{c^3\left(a+b\right)}+\frac{c\left(a+b\right)}{4}\ge2\sqrt{\frac{c\left(a+b\right)}{4c^3\left(a+b\right)}}=\frac{1}{c}\)
Cộng theo vế:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}+\frac{ab+bc+ac}{2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{ab+bc+ac}{2}\)
\(\Leftrightarrow\frac{2}{a^3\left(b+c\right)}+\frac{2}{b^3\left(c+a\right)}+\frac{2}{c^3\left(a+b\right)}\ge ab+bc+ac\) (đpcm)
\("="\Leftrightarrow a=b=c=1\)
https://olm.vn/hoi-dap/detail/82505750499.html
Ở mục câu hỏi tương tự có bài đó bạn ơi