K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Áp dụng BĐT AM-GM ta có:

\(2\sqrt{\dfrac{y+z-x}{x}}\le\dfrac{y+z-x}{x}+1=\dfrac{y+z}{x}\)

\(\Leftrightarrow\sqrt{\dfrac{x}{y+z-x}}\ge\dfrac{2x}{y+z}\)

Áp dụng vào đề bài ta có:

\(A=\sqrt{\dfrac{a}{b+c-a}}+\sqrt{\dfrac{b}{c+a-b}}+\sqrt{\dfrac{c}{a+b-c}}\ge\)

\(\ge\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=\dfrac{2.3}{2}=3\)(BĐT Nesbitt)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

8 tháng 3 2017

C1 : Áp dụng bất đẳng thức AM - GM ta có :

\(\sum\dfrac{a}{b+c-a}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)

Dấu = xảy ra khi và chỉ khi a = b = c.

C2 : Theo Cauchy Schwarz :

\(\sum \frac{a}{b+c-a}\geq \sum \frac{a^2}{ab+ac-a^2}\geq \frac{(a+b+c)^2}{2(ab+ca+bc)-a^2-b^2-c^2}\geq \frac{(a+b+c)^2}{\frac{2}{3}(a+b+c)^2-\frac{1}{3}(a+b+c)^2}=3\)

(đpcm).

8 tháng 3 2017

Đặt b+c-a=x, c+a-b=y, a+b-c=z thì 2a =y+z, 2b +x+z, 2c +x+y. Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)

= \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

=\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)(1)

\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)( vì xy >0)

\(\Rightarrow\)\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)(2)

Tương tự: \(\dfrac{z}{x}+\dfrac{x}{z}\ge2\)(3)

\(\dfrac{z}{y}+\dfrac{y}{z}\ge2\)(4)

Từ (1),(2),(3) và (4):

\(\Rightarrow\)\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)\(\ge6\)

Hay \(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\) \(\ge6\)

Do đó: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)(đpcm)

3 tháng 7 2017

Thấy đún

Hỏi đáp Toán

3 tháng 10 2017

chữ bn đẹp thật

giờ mới nhân ra haha

1 tháng 7 2017

surf trc khi hỏi Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến

1 tháng 7 2017

Giải:

Ta có BĐT phụ: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Áp dụng BĐT Cauchy - Schwarz ta có:

\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

\(\ge3\sqrt[3]{\dfrac{abc}{abc}}\ge3\) (Đpcm)


26 tháng 1 2021

 +  +  ≥ 3.

Đặt b + c – a = x > 0 (1); a + c – b = y > 0  (2); a + b – c = z > 0  (3)

Cộng (1) và (2) => b + c – a + a + c – b = x + y ⇔ 2c = x + y ⇔ c = 

Tương tự a =  ; b = 

Do đó  +  +  =  +   +  = ( +  +  +  +  + )

[( + ) + ( + ) + ( + )] ≥ (2 + 2 + 2) = 3.

Vậy  +  +  ≥ 3.

26 tháng 1 2021

tham khảo ạ

16 tháng 8 2017

Sửa lại đề \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) (cái này có trong CHTT rồi nhé nhưng giờ bỗng dưng rảnh làm lại luôn đỡ mất công tìm)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(a+b+c\right)\left(a'+b'+c'\right)\)

\(\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)=VT^2\)

Tức là \(VP\ge VT\)

Xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

10 tháng 12 2017

Ta có :\(2\sqrt{\frac{b+c-a}{a}}\le\frac{b+c-a}{a}+1=\frac{b+c}{a}\)

<=>   \(\sqrt{\frac{a}{b+c-a}}\ge\frac{2a}{b+c}\)

\(CMTT\)=> \(\sqrt{\frac{b}{c+a-b}}\ge\frac{2b}{c+a}\)

                      \(\sqrt{\frac{c}{a+b-c}}\ge\frac{2c}{a+b}\)

=>\(VT\)\(\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\)

\(CM\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

=>    \(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3\)

=>\(VT\ge3\)

8 tháng 12 2017

lên google tìm cosi mà làm theo nha

25 tháng 7 2017

vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)

\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)

\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v

25 tháng 7 2017

bài này 
áp dụng cô si ta có 
a³/b + ab ≥ 2a² 
b³/c + bc ≥ 2b² 
c³/a + ac ≥ 2c² 
+ + + 3 cái lại 
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc 
mặt khác ta có 
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé) 
thay vào 
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1 
=>minP = 1 
dấu bằng xảy ra <=. a = b = c = 1/√3 
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)

k và kết bạn cho mình nha !!!