Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn, hãy theo dõi lời giải của mình nhé!
\(VT=\sqrt{4\left(a^2+b^2+c^2\right)+2\Sigma_{cyc}\sqrt{\left(a^2+3b^2\right)\left(b^2+3c^2\right)}}\)
\(\ge\sqrt{4\left(a+b+c\right)^2}=2\left(a+b+c\right)\) (Bunhia)
ez to prove\(\frac{\left(a+b+c\right)^2}{3}\ge a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a+b+c\right)^4}{3}\ge27\Rightarrow a+b+c\ge3\)
Thay vào và hoàn tất chứng minh.
P/s: Bài trên có ngược dấu đấy kkk
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Mình đặt biểu thức đó là P
Ta có : \(\sqrt{3a^2+2ab+3b^2}=\sqrt{\left(a-b\right)^2+2\left(a+b\right)^2}\ge\sqrt{2\left(a+b\right)^2}=\sqrt{2}\left(a+b\right)\)
Tương tự ta cũng có :
\(\sqrt{3b^2+2bc+3c^2}\ge\sqrt{2}\left(b+c\right)\) , \(\sqrt{3c^2+2ca+3a^2}\ge\sqrt{2}\left(c+a\right)\)
Suy ra : \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
\(\ge\sqrt{2}\left(a+b\right)+\sqrt{2}\left(b+c\right)+\sqrt{2}\left(c+a\right)\)
\(=2\sqrt{2}\left(a+b+c\right)\)
+ ) Áp dụng bất đẳng thức AM - GM :
\(a+b+c=a+1+b+1+c+1-3\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3=2.3-3=3\)
Suy ra \(P\ge2\sqrt{2}.3=6\sqrt{2}\)
Vậy giá trị nhỏ nhất của \(P=6\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=3\\\sqrt{a}=\sqrt{b}=\sqrt{c}=1\\a=b=c\end{matrix}\right.\) \(\Rightarrow a=b=c=1\)
GTNN là tắt của giá trị nhỏ nhất,
Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\) (số a là số biết trước)
VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\) hay \(minP=\dfrac{1}{3}\)
Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,
VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra
<=> x = b (x là ẩn và b là biết trước)
Ở một số bài có thể cho điều kiện của ẩn.
\(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ab+3b^2}\)
\(=\sqrt{2\left(a+b\right)^2+\left(a-b\right)^2}+\sqrt{2\left(b+c\right)^2+\left(b-c\right)^2}+\sqrt{2\left(c+a\right)^2+\left(c-a\right)^2}\)
\(\ge2\sqrt{2}\left(a+b+c\right)\ge\sqrt{2}\left(2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3\right)=6\sqrt{2}\)
Vậy GTNN của P là \(6\sqrt{2}\Leftrightarrow a=b=c=1\)