K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

minh de0 can ban dang lai cau hoi cua minh dau :)

6 tháng 11 2019

Chào bạn, hãy theo dõi lời giải của mình nhé!

\(VT=\sqrt{4\left(a^2+b^2+c^2\right)+2\Sigma_{cyc}\sqrt{\left(a^2+3b^2\right)\left(b^2+3c^2\right)}}\)

\(\ge\sqrt{4\left(a+b+c\right)^2}=2\left(a+b+c\right)\) (Bunhia)

ez to prove\(\frac{\left(a+b+c\right)^2}{3}\ge a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^4}{3}\ge27\Rightarrow a+b+c\ge3\)

Thay vào và hoàn tất chứng minh.

P/s: Bài trên có ngược dấu đấy kkk

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

10 tháng 9 2017

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

10 tháng 9 2017

Chào bác Thắng

14 tháng 3 2020

Mình đặt biểu thức đó là P

Ta có : \(\sqrt{3a^2+2ab+3b^2}=\sqrt{\left(a-b\right)^2+2\left(a+b\right)^2}\ge\sqrt{2\left(a+b\right)^2}=\sqrt{2}\left(a+b\right)\)

Tương tự ta cũng có :

\(\sqrt{3b^2+2bc+3c^2}\ge\sqrt{2}\left(b+c\right)\) , \(\sqrt{3c^2+2ca+3a^2}\ge\sqrt{2}\left(c+a\right)\)

Suy ra : \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

\(\ge\sqrt{2}\left(a+b\right)+\sqrt{2}\left(b+c\right)+\sqrt{2}\left(c+a\right)\)

\(=2\sqrt{2}\left(a+b+c\right)\)

+ ) Áp dụng bất đẳng thức AM - GM :

\(a+b+c=a+1+b+1+c+1-3\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3=2.3-3=3\)

Suy ra \(P\ge2\sqrt{2}.3=6\sqrt{2}\)

Vậy giá trị nhỏ nhất của \(P=6\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=3\\\sqrt{a}=\sqrt{b}=\sqrt{c}=1\\a=b=c\end{matrix}\right.\) \(\Rightarrow a=b=c=1\)

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

17 tháng 12 2018

\(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ab+3b^2}\)

\(=\sqrt{2\left(a+b\right)^2+\left(a-b\right)^2}+\sqrt{2\left(b+c\right)^2+\left(b-c\right)^2}+\sqrt{2\left(c+a\right)^2+\left(c-a\right)^2}\)

\(\ge2\sqrt{2}\left(a+b+c\right)\ge\sqrt{2}\left(2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-3\right)=6\sqrt{2}\)

Vậy GTNN của P là \(6\sqrt{2}\Leftrightarrow a=b=c=1\)