Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :
\(A\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{3}{3}=1\)
Dấu "=" xảy ra <=> a=b=c=1
Em không chắc lắm đâu nhé!
Biến đổi \(A=\frac{\left(\frac{a^4}{b^2}\right)}{b\left(c+2a\right)}+\frac{\left(\frac{b^4}{c^2}\right)}{c\left(a+2b\right)}+\frac{\left(\frac{c^4}{a^2}\right)}{a\left(b+2c\right)}\)
\(=\frac{\left(\frac{a^2}{b}\right)^2}{b\left(c+2a\right)}+\frac{\left(\frac{b^2}{c}\right)^2}{c\left(a+2b\right)}+\frac{\left(\frac{c^2}{a}\right)^2}{a\left(b+2c\right)}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)
Áp dụng BĐT Cauchy-Schwarz cho cái biểu thức trong ngoặc ở trên tử,ta lại được:
\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\) (áp dụng BĐT quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) cho cái biểu thức dưới mẫu)
Dấu "=" xảy ra khi a = b =c
Vậy \(A_{min}=1\Leftrightarrow a=b=c\)
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM:
\(A=\frac{a^4}{a^2+2ab}+\frac{b^4}{ab+2b^2}+\frac{b^4}{b^2+2bc}+\frac{c^4}{bc+2c^2}+\frac{c^4}{c^2+2ac}+\frac{a^4}{ca+2a^2}\)
\(\geq \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}=\frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}\geq \frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+a^2+b^2+c^2)}\)
hay \(A\geq \frac{2}{3}(a^2+b^2+c^2)=2\)
Vậy $A_{\min}=2$. Dấu "=" xảy ra khi $a=b=c=1$
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Cho a,b,c>0 CMR
\( \frac{a^3}{a+2b}+ \frac{b^3}{b+2c}+ \frac{c^3}{c+2a} \ge \frac{a^2+b^2+c^2}{3} \)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\geq \frac{(a^2+b^2+c^2)^2}{a^2+2ab+b^2+2bc+c^2+2ac}\)
\(\Leftrightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{(a+b+c)^2}\) (1)
Theo hệ quả của BĐT AM-GM thì ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\) (2)
Từ \((1),(2)\Rightarrow \text{VT}\geq \frac{a^2+b^2+c^2}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c>0\)
Ta sẽ sử dụng phương pháp Cauchy ngược dấu để CM bài toán này
Xét \(\frac{a^2}{a+2b^3}=\frac{a\left(a+2b^3\right)-2ab^3}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\)
\(=a-\frac{2ab^3}{a+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}\cdot\frac{ab}{\sqrt[3]{a}}\)
\(=a-\frac{2}{3}\cdot\left(b\sqrt[3]{a^2}\right)=a-\frac{2}{3}\cdot b\cdot\sqrt[3]{a\cdot a\cdot1}\)
\(\ge a-\frac{2}{9}\cdot b\cdot\left(a+a+1\right)=a-\frac{2b}{9}\left(2a+1\right)=a-\frac{2}{9}\left(2ab+b\right)\)
Tương tự ta biến đổi với các phân thức còn lại:
\(\frac{b^2}{b+2c^3}\ge b-\frac{2}{9}\left(2bc+c\right)\) và \(\frac{c^2}{c+2a^3}=c-\frac{2}{9}\left(2ca+a\right)\)
Cộng vế 3 BĐT trên lại ta được: \(P\ge\left(a+b+c\right)-\frac{2}{9}\left[2\left(ab+bc+ca\right)+\left(a+b+c\right)\right]\)
\(\ge3-\frac{2}{9}\left[2\cdot\frac{\left(a+b+c\right)^2}{3}+3\right]=3-\frac{2}{9}\left(2\cdot3+3\right)=1\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Vậy Min(P) = 1 khi a = b = c = 1