Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lỗi đánh máy à? ABC là tg vuông, trong khi BCE là tg nhọn => ko đồng dạng
b) Chứng minh 2 tg vuông AHE và BHD đồng dạng (g.g---góc vuông đã cho và 2 góc nhọn đối đỉnh)
=> tỉ số : HB/HA = HD/HE
Từ đó suy ra đẳng thức cần chứng minh ("nhân chéo")
c) Áp dụng đl Pi-ta-go tính AB
HC = ko biết (có thể liên quan đến câu a -- suy nghĩ riêng thôi)
a)Xét tg AHE. BHD có:
góc E=D=90¤
ggóc AHE=BHD (2 góc đối đỉnh)
suy ra 2 t giác đồng dạng
Bài 10:
a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔABE\(\sim\)ΔCBD(g-g)
b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có
\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)
Do đó: ΔHDA\(\sim\)ΔHEC(g-g)
Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)
hay \(HD\cdot HC=HE\cdot HA\)
Bài 11:
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
hay \(HE\cdot HB=HF\cdot HC\)
c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
a.
Xét \(\Delta ACD\) và \(\Delta BCE\) có:
góc C chung
góc ADC = góc BEC = 90o
Do đó tam giác ACD đồng dạng tam giác BCE ( g-g)
a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
góc C chung
Do đó: ΔADC\(\sim\)ΔBEC
b: Xét ΔHAE vuông tại E và ΔHBD vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHAE\(\sim\)ΔHBD
Suy ra: HA/HB=HE/HD
hay \(HA\cdot HD=HE\cdot HB\)