Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Tự vẽ hình )
a, Xét tam giác ABE và tam giác ACF có :
Góc A chung
Góc E = Góc F = 90 độ
=> Tam giác ABE đồng dạng với tam giác ACF ( g.g)
=> AB/AC = AE/AF
Hay AF . AB = AE . AC
b, AB/AC = AE/AF ( CM trên )
=> AB/AE = AC/AF
Xét tam giác AEF và tam giác ABC có :
AB/AE = AC/AF ( CM trên )
Góc A chung
=> Tam giác AEF đồng dạng với tam giác ABC ( c.g.c )
=> Góc AEF = Góc ABC
c, Ta có : HF vuông góc với AB; DM vuông góc với AB => HF// DM
=> AF/AM = AH/AD ( Theo định lý Ta lét )
Lại có : FE// MN => AF/AM = AE/AN ( Theo định lý Ta lét )
=> AH/AD = AE/AN
=> HE // DN ( Theo định lý Ta lét đảo )
Mà HE vuông góc với AC => DN vuông góc với AC
a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB∼ΔHEC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HB\cdot HE=HC\cdot HF\)(đpcm)
a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
Mình chỉ biết làm mỗi câu d thôi bạn thông cảm nhé !!!
d) Vì BE vuông AC, CF vuông AB(gt)
Mà BE, CF cắt nhau tại H
=> H là trực tâm của tam giác ABC
Ta có Sbhc/Sabc = 1/2 x HD xBC/1/2 x AD x BC = HD/AD (1)
Ta có Sahc/Sabc = 1/2 x HE x AC/1/2 x BE x AC = HE/BE (2)
Ta có Sabh/Sabc = 1/2 x HF x AB/1/2 x CF x AB = HF/CF (3)
Từ (1), (2), (3) => HD/AD + HE/BE + HF/CF = Sbhc/Sabc + Sahc/Sabc + Sabh/Sabc
=> HD/AD + HE/BE + HF/CF = Sabc/Sabc
=> HD/AD + HE/BE + HF/CF = 1 (Đpcm)
câu c nè
Chứng minh tgCEB đồng dạng vs tgCDA (g.g)=>gócEBC= gócDAC
Do đó : tg ADC đồng dạng với tam giác BDH=>AD/BD=DC/DH
=>BD/DH=AD/DC=>BD/DH=3/4(AD PYTAGO vào tg vuông ADC ta tính được DC=4)
vậy\(\frac{BD}{DH}=\frac{3}{4}\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)