Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Câu a/ Thì chứng minh ở dưới rồi nhé e
b/ Ta cần chứng minh
\(2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)
\(\Leftrightarrow2abc\left(a+b+c\right)=0\)(đúng)
=> ĐPCM
c/ Ta có
\(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=a^4+b^4+c^4\)
Cái này là áp dụng câu a vô nhé e
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(=a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=3\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)\)
\(\Rightarrow2\left(ab+bc+ac\right)=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow ab+bc+ac=a^2+b^2+c^2\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
(a-b)^2 + (a-c)^2 = 4(a^2 + b^2 + c^2 - ab - bc - ca)
a^2 - 2ab + b^2 + a^2 - 2ac + c^2 = 4a^2 + 4b^2 + 4c^2 - 4ab - 4bc - 4ca
- 2a^2 - 3b^2 - 3c^2 - 2ab - 2ac = - 4ab - 4bc - 4ac
2a^2 + 3b^2 + 3c^2 + 2ab + 2ac = 4ab + 4bc + 4ca
2a^2 + 3b^2 + 3c^2 = 2ab + 4bc + 2ac
(a-b)^2 + (b-c)^2 + (a-c)^2 = 0 [ đoạn này hơi tắt]
mà (a-b)^2 ; (b-c)^2 ; (a-c)^2 > hoặc = 0
=> a = b = c
mik nha
Ta có \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2acb^2+2abc^2\)
\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)
Ta lại có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Ta có (ab+bc+ca)2=a2b2+b2c2+c2a2+2a2bc+2acb2+2abc2
=a2b2+b2c2+c2a2+2abc(a+b+c)=a2b2+b2c2+c2a2
Ta lại có
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0
⇔(a2+b2+c2)2=4(ab+bc+ca)2
⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4(ab+bc+ca)2
⇔a4+b4+c4+2(ab+bc+ca)2=4(ab+bc+ca)2
⇔a4+b4+c4=2(ab+bc+ca)2
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
<=>\(ab+bc+ca=0\)
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=> \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=>\(\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c}^3\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=\frac{-1}{c}^3\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có: \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3abc}{abc}=3\)
a) Ta có: \(a+b+c=0\)
\(\Rightarrow2abc\left(a+b+c\right)=0\)
\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)
Ta lại có:
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\) (cái này bạn tự chứng minh nha)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\left(đpcm\right)\)
b) Ta có: \(a+b+c=0\)
\(\Rightarrow a=-\left(b+c\right)\)
\(\Rightarrow a^2=b^2+c^2+2bc\)
\(\Rightarrow a^2-b^2-c^2=2bc\)
\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)
\(\Rightarrow a^4+b^4+c^4=4b^2c^2+2a^2b^2+2a^2c^2-2b^2c^2\)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Rightarrow a^4+b^4+c^4+a^4+b^4+c^4=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\left(đpcm\right)\)
Chúc bạn học tốt và tíck cho mìk vs nhé!
Cảm ơn bạn