K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

\(\left(a+b\right)^2=4^2\Leftrightarrow a^2+2ab+b^2=16\Leftrightarrow a^2+b^2=4-2ab=16-2.1=14\)

Vậy,  \(M=14\)

4 tháng 7 2017

Ta có:a+b=23\(\Rightarrow\)(a+b)2=232

\(\Rightarrow\)(a+b)2=529\(\Rightarrow\)a2+2ab+b2=529

\(\Rightarrow\)a2+b2=529-2.132

\(\Rightarrow\)a2+b2=529-264\(\Rightarrow a^2+b^2=265\)

4 tháng 7 2017

Ta có: (a+b)^2=a^2+2ab+b^2
Thay a+b=23 ,a.b=132 vào biểu thức ta có:
     23^2=a^2+b^2+2.132
      529=a^+b^2+264
      529-264=a^2+b^2
        265     =a^2+b^2
Vậy a^2+b^2=265
 k mik nha bạn

27 tháng 7 2021

Ta có a - b = 1

=> (a - b)2 = 1

<=> a2 + b2 - 2ab = 1

<=> a2 + b2 = 25

=> (a2 + b2)2 = 625

<=> a4 + b4 + 2(ab)2 = 625

<=> a4 + b4 = 625 - 2.122 = 337

4 tháng 7 2017

\(\hept{\begin{cases}a=12\\b=11\end{cases}}\)hoặc \(\hept{\begin{cases}a=11\\b=12\end{cases}}\)

Ta có \(a^2+b^2=11^2+12^2=265\)

Hoặc \(a^2+b^2=12^2+11^2=265\)

.. Kết bạn với mình nha 

4 tháng 7 2017

Ta có : 

a . b = 132 => a = \(\frac{132}{b}\).Thay a = \(\frac{132}{b}\)vào biểu thức a + b = 23 ta được : 

\(\frac{132}{b}+b=23\)\(\Leftrightarrow\frac{132+b^2}{b}=23\)\(\Leftrightarrow b^2-23b+132=0\)\(\Leftrightarrow\orbr{\begin{cases}b=12\\b=11\end{cases}}\)

Với b = 12 => a = 132 : 12 = 11 => \(a^2+b^2=11^2+12^2=265\)

Với b = 11 => a = 132 : 11 = 12 => \(a^2+b^2=12^2+11^2=265\)

Đáp số: \(a^2+b^2=265\)

24 tháng 7 2019

a) \(a^2+b^2=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2ab=5^2-2.6=25-12=13\)

24 tháng 7 2019

a) Vì \(a+b=5\Rightarrow\left(a+b\right)^2=25\)

                             \(\Rightarrow a^2+2ab+b^2=25\)

                               Mà ab= 6 

\(\Rightarrow a^2+18+b^2=25\)

\(\Rightarrow a^2+b^2=7\)

6 tháng 8 2015

M=(a^3+b^3)+(a^2+b^2)+(a+b)=(a+b).(a^2-ab+b^2)+(a^2+b^2)+1=2.(a^2+2ab+b^2)-4ab-2+1=2.(a+b)^2 -4.2-2+1=2.1-8-2+1=-7

29 tháng 10 2019

\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)

\(\Rightarrow a-b=-1\)

\(\Rightarrow A=\left(-1\right)^5=?\)

\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)

a: \(M=\left(a+b\right)^2-2ab=S^2-2p\)

b: \(N=\left(a+b\right)^3-3ab\left(a+b\right)=S^3-3pS\)

c: \(Q=\left(a^2+b^2\right)^2-2a^2b^2=\left(S^2-2p\right)^2-2\cdot p^2\)