K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Ta có: \(4a^2+3ab-11b^2\)

\(=5a^2+5ab-10b^2-a^2-2ab-b^2\)

\(=5a^2+5ab-10b^2-\left(a+b\right)^2\)

\(5a^2+5ab-10b^2⋮5\Rightarrow\left(a+b\right)^2⋮5\Rightarrow a+b⋮5\)

\(\Rightarrow a^4-b^4=\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)⋮5\)

(vì a+b chia hết cho 5)

Vậy \(a^4-b^4⋮5\left(đpcm\right)\)

1 tháng 7 2016

a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn. 

b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên

a.(a-1).(a+1) chia hết cho 3.

 => a3- a chia hết cho 3.

Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.

=> a3+b3+c- (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.

Do đó nếu  a3+b3+cchia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.

Vậy đpcm.

2 tháng 7 2016

Tớ làm thêm một cách cho câu b nhé ;) 

Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)

Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)

=> a+b chia hết cho 3 

 

 

19 tháng 7 2017

a) \(ab\left(a^4-b^4\right)=a^5b-ab^5=a^5b-ab-\left(ab^5-ab\right)\)

Xét: \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)\)

\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)\left(x^2-4\right)+5\left(x-1\right)\left(x+1\right).x\)

\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)

= A + B

\(A⋮2,3,5\) ; \(B⋮2,3,5\)

Mà 2,3,5 là đôi nguyên tố bằng nhau

\(\Rightarrow A⋮2.3.5\)\(B⋮2.3.5\)

\(\Rightarrow A+B⋮30\)

hay \(x^5-x⋮30\) \(\forall x\in N\)

Do đó \(a^5-a⋮30\)\(b^5-b⋮30\) với \(a,b\in N\)

\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)⋮30\)

Hay \(ab\left(a^4-b^4\right)⋮30\)

b) Ta có \(B=a^2b^2\left(a^4-b^4\right)\)

\(=ab.ab.\left(a^4-b^4\right)\) (1)

Mặt khác: \(ab\left(a^4-b^4\right)⋮30\) (ở câu a) (2)

+Nếu a hoặc b chẵn:

Từ (1) và (2) suy ra \(B⋮60\)

+Nếu a,b cùng lẽ:

Thì:\(\left(a^2-b^2\right)\)\(\left(a^2+b^2\right)\)cùng chẵn

Suy ra \(\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4⋮4\) hay \(B⋮4\)

+ Từ (2) suy ra \(ab\left(a^4-b^4\right)⋮15\)

Mà (4;15)=1

Nên \(B⋮4.15\) hay \(B⋮60\)

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)